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SUMMARY 

A description and analysis is presented of the more important developments during the 
past decade in the understanding of the wall interference problem associated with two- 
dimensional wind tunnel testing at subsonic and transonic speeds. Discussed are wall 
boundary conditions, asymptotic analysis of wall interference, classical and extended wall 
interference theories, wall interference corrections from boundary measurements, integral 
equation formulation of subcritical wall interference, and effects of side wall boundary 
layer on two-dimensional tests. Unsteady wall interference at subsonic flow conditions is 
reviewed. Recent advances in the adaptive wall technique, which actively reduces or 
eliminates wall interference, are also described. 
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1.0   INTRODUCTION 

Nearly two decades have passed since the publication of the AGARDograph "Subsonic Wind Tunnel Wall Corrections" by 
Gamer, Rogers, Acum; and MaskeU [1.1]. During this time significant advances have taken place, so that a new review of the wall 
interference topic became a worthwhile project, even if it should cover, as we proposed, only the two-dimensional part of the problem. 

In 1975, a discussion concerning the future of wind tunnels was initiated following the appearance of the article "Computers 
vs. Wind Tunnels" by Chapman, Mark and Pirtle [1.2]. Drawing comparisons with other fields of computational physics, the authors 
predicted that advances in computer capabilities would eventually provide cheaper and more accurate simulation of flight aerodynamics 
than the wind tunnels can. The wind tunnels would then perform only a secondary role to computers. As major obstacles to routine 
computer solution for complete viscous flows identified were the lack of storage and speed of existing computers and the inadequacy 
of available turbulence models. As noted by Bradshaw [1.3] and Marvin [1.4], more comparisons with well-conceived wind tunnel 
experiments will in fact be required to guide the development of turbulence models applicable to more complex flows. 

So far, there has not been any noticeable decline in wind tunnel activities, even though the computers are gradually taking a 
relatively bigger share in aircraft design, see Figure 1.1. The unit cost of computer simulations is continually decreasing as a result of 
improved nvmierical procedures and advances in computer technology [1.5] and it is foreseen that in perhaps two decades the computer 
could become an equal partner with the wind tunnel [1.6], [1.7]. On the other hand, the enhancement of wind tunnel capabilities can 
be realized by integrating wind tunnels and computers as exemplified by the adaptive wall concept. Confidence that wind tunnels will 
continue to contribute to advances in aircraft design is evidenced by the construction of the new tunnel capabilities in industrialized 
countries, such as the cryogenic National Transonic Facility at NASA Langley, U.S.A., and the planning for the European Transonic 
Windtunnel [1.8]. To meet the future challenges, improved correction and wall adjustment schemes for obtaining more reliable wind 
tunnel data wiU have to be developed. 

In this report we have tried to address all major topics in two-dimensional wall interference, but no attempt has been made 
to be encyclopedic. In the process of deciding which correction methods to include, preference has been given to those based on the 
solution of boundary value problems, consisting of a governing differential equation and appropriate boundary conditions. Unlike the 
empirical corrections, which often apply only to one particular facility (or worse, one model), the techniques based on the boundary 
value problem approach are lasting contributions in a sense that they represent valid mathematical solutions, even though they may 
not describe a particular tunnel experiment in all its complexity. In fact, the correction procedures described in this treatise are approx- 
imations, based on potential flow methods, external flow field estimations, thin airfoil theories, wind tunnel idealizations, etc. An 
ultimate tool for analyzing wall interference would be a numerical technique allowing complete solution of viscous flows past airfoUs 
in a wind tunnel. Ironically, this goal has a self-defeating purpose, following from the argument that if we could calculate such flows 
there would be no need for wind tunnel tests, much less for numerical simulations of the wind tunnel with its complicated boundary 
conditions. Clearly, exact free air calculations would serve the purpose more than adequately. But as we said earlier, to date such 
techniques are still outside our reach. 

The problem areas which contribute to inaccuracy in wall interference prediction, as summarized by Kemp [1.9], are 
indicated in Figure 1.2. They are: 

(a) nonlinearity of the governing equation at supercritical flow conditions, 

(b) nonlinearity of ventilated wall crossflow boundary conditions and difficulties in predicting or measuring them, 

(c) wind tunnel geometry features, such as finite ventilated wall length, diffuser entry and presence of a wake survey rake and its 
support, 

(d) boundary layer on tunnel side walls, which causes the flow to deviate from the two-dimensional flow conditions. 

An excellent survey of the physical properties of test section walls, particularly the ventilated ones, is given in the book by 
Goethert [1.10]. The treatment of subject in Chapter 2 of our report is therefore limited to results of more recent developments. Also, 
the discussion of physical phenomena is restricted to an extent which is needed for the specification of the wall boundary condition in' 
other parts of the report. 

Once regarded solely as an engineering approximation, wall interference theory has turned out to be a reputable topic, 
justifiable as other two Prandtl's concepts - the boundary layer and the lifting Une — by singular perturbation analysis. To present 
this viewpoint at an early stage, the asymptotic analysis of waU interference is placed in Chapter 3, even though it is a relatively new 
subject. 

Chapter 4 is an outline of the subsonic wall interference theory, based on linear homogeneous boundary condition of the 
walls and the representation of the airfoil far field by concentrated singularities. This theory, providing an insight into the essential 
features of subsonic wall interference, had been considered the basic correction tool for decades [1.1], [1.11]. The novelty of our 
approach is the systematization of the correction formulas, which were originaUy introduced in an ad hoc fashion. Attention is also paid 
to far field expressions for the wall interference potential, that are useful as upstream and downstream conditions for computations of 
transonic flows past airfoUs at subcritical waU conditions. However, the methods of computational fluid dynamics themselves are 
outside the scope of the present publication. Regarding the finite difference methods, which are most frequently used to compute 
transonic flows past airfoils in the idealized wind tunnel environment, the reader is advised to consult References [1.12] to [1.16]. In 
Chapter 4, additional attention is paid to the effect of the finite test section length and plenum pressure. But even with these exten- 
sions, the classical wall interference theory has reached the hmits of its usefulness: it has become more and more apparent that the 
ideaHzation of tunnel boundary conditions cannot produce sufficiently accurate correction formulae for practical use. 

The extension of the porous wall theory in Chapter 5, to consider different resistance of porous walls opposing the suction 
and pressure sides of the airfoU was one of the first attempts to incorporate the actual tunnel wall characteristics in the wall interference 
evaluation. Using this approach it is possible to retain the advantages of a linear theory and supply the closed form solution with 
porosity parameters, derived firom static pressure measurements on the waUs above and below the model. An unproved version of the 
method, based on a more precise concept of different inflow and outflow waU resistances is also presented. Since in this case mixed 
inflow-outflow regimes are'modeled, the wall corrections have to be obtained numerically. 

Chapter 6 deals with the evaluation of interference corrections from boundary data, measured either at the walls or some 
distance from them. The appUcation of measured static pressures and/or flow angles as boundary values ensures that the true physical 
behaviour of ventUated tunnel waUs is taken into account when calculating the corrections. The techniques based on measured static 
pressures are regarded as the most practical of the discussed methods and are gaining wide acceptance. NaturaUy, the boundary data 
have to be taken with each wind tunnel test case, so that they are suitable for on-line or post-test assessment, not for prediction. 



Chapter 7 concerns the integral representation of the velocity potential in terms of Green's function. From the point of view 
of mathematical physics, this seems to be the most natural approach to the wall interference problem. Besides providing an alternative 
justification of the classical wall interference concept, it allows the formulation of wall interference in terms of the modified Glauert or 
Oswatitsch integral equations. 

Chapter 8 is an outline of unsteady wall interference. A special attention is paid to the phenomenon of transverse resonance 
which is one of the most severe examples of wall interference. The treatment, which is by no means exhaustive, concentrates on 
ventilated walls, compressible flow, and thin airfoils undergoing small amplitude harmonic motion. A more systematic presentation has 
not been attempted in view of an incomplete development of the theory and a lack of reliable experimental data. 

Chapter 9 deals with the effect of sidewall boundary layers, which may be as important as the (two-dimensional) wall 
interference itself. The pressure field around the test airfoil causes variations in the displacement thickness of the boundary layer on 
the sidewaUs, thereby violating the two-dimensionality of the flow. Unless the boundary layer is controlled, post-test corrections are 
required to be appUed to the airfoil data. 

Finally, Chapter 10 is concerned with the adaptive wall concept, pointedly characterized as a marriage of state-of-the-art 
computational and experimental capabilities. Discussed are the operation principles of the adaptive ventilated walls, producing 
interference-free conditions by controlling the flowfield through suction and blowing, and the self-streamlining walls, effecting the 
same by assuming streamline shapes in unconfined flow. The minimization of wall interference by adaptive walls is essentially a 
variational problem, which is no less challenging than the evaluation of corrections for passive walls. Most of the work on adaptive 
walls is still in the technology-development phase; however the concept has been shown to be feasible, and it is likely that production 
facilities wUl be built before long [1.17]. Besides this optimism there are also cautionary views [1.18], that the new technological 
advances vriU have to be accompanied by more efficient flow analysis and wall control codes — particularly for transonic flows at the 
walls — to make the adaptive wall wind tunnel viable. Accordingly, a special attention is paid to the question of initial wall setting and 
one-step adjustment schemes. The current state of the art of the adaptive wall technology is summarized in Reference [1.19], and a 
selected, annotated bibliography is given in Reference [1.20]. 

Since the present monograph is a joint work of three authors and differences in style are apparent, it is appropriate to 
indicate the individual contributions: Y.Y. Chan prepared Chapters 3 and 9, together with a part of Chapter 2, D.J. Jones is responsible 
for the second part of Chapter 5, and M. Mokry wrote Chapters 4, 6, 7, 8, 10 and parts of Chapters 2 and 5, the entire manuscript was 
edited by L.H. Ohman. 

Our special thanks are due to Dr. P.R. Ashill of the Royal Aircraft Establishment, England, Professor S. Bemdt of the 
Royal Institute of Technology, Sweden, W.B. Kemp of NASA Langley, U.S.A., Dr. E.M. Kraft of ARVIN/CALSPAN, U.S.A., 
Dr. N.D. Malmuth of the Rockwell International, U.S.A., Professor E.M. Murman of MIT, U.S.A., H. Sawada of the National Aerospace 
Laboratory, Japan, and J. Smith of NLR, Netherlands, for reading various parts of the manuscript and offering valuable suggestions. 
Acknowledged are also the discussions with J.P. Chevallier of ONERA, France and Professor M. Golberg of the University of Nevada. 

A note of particular appreciation is due to Mrs. M.H. Cole of the National Research Council Canada, for the meticulous 
typesetting of the text. 
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2.0 WALL BOUNDARY CONDITIONS 

2.1 Introductory Remarks 

An excellent survey of physical properties of various types of wind tunnel walls is given in the book by Goethert [2.1], 
published in 1961. The present chapter discusses some newer developments, but concentrates mainly on the specification of wall 
boundary conditions that are of importance for the calculation of wall interference. 

By the wall boundary condition we understand the relation between the normal component V of velocity and the pressure 
difference across the wall p - Ppienum> ^^^ Figure 2.1. Using the undisturbed values of velocity U„, pressure p^ and density p^ far 
upstream, we form the pressure coefficients 

P - P=o 
•^P = \  (2.1) 

-p.Ui 

and 

Pplenum ~ ?«■ 
C„ , =   (2.2) Pplenum ^ ^       ' 

-P.vl 

The velocity ratio V/U„ can be expressed in terms of the disturbance velocity potential 4> as 

V b<l> 
U:  = ^ (2.3) 

where n is the outward normal to the wall. Supposing that the tested model generates small pressure disturbances at the (distant) wall, 
then according to the linearized Bernoulli theorem 

2   d0 

where 

d       a 9 

is the linearized total time derivative; x is the co-ordinate tangent to the wall. 

Depending on situation, the wall boundary condition thus can be stated in terms of V/U„ and Cp, or the derivatives of 0. For 
unsteady flow calculations some authors prefer to use the (linearized) acceleration potential 

P - P- 
* =  

P» 

which of course differs from Cp, Equation (2.1), only by a factor. 

2.2 SoUd (Closed) WaUs 

The simplest boundary condition is obtained for a solid (closed) wall. Since there is zero mass flux through the wall, normal 
velocity vanishes at the wall: 

V = 0 (2.6) 

Using Equation (2.3), the solid (closed) wall boundary condition takes the form 

30 
-^ = 0 (2.7) 
on 

For a solid wall wind tunnel, the wall boundary layer growth for a model with moderate lift is close to that on a flat plate as 
the pressure gradient is very small along the wall. The displacement effect on the tunnel flow can be compensated by setting the wall 
slightly divergent downstream, so that Equation (2.7) can be applied with a greater confidence along a plane parallel to the undisturbed 
stream. However, at high lift condition with flow separation at the rear part of the model, the location of the separation point is shown 
to be sensitive to wall interference and the growth of the wall boundary layer, which is no longer a flat plate type but is modulated by 



the strong pressure field generated by the model [2.2]. Nevertheless, the wall boundary layers are in most cases thin compared to the 
distance from the model and Equation (2.7), as a boundary condition, is considered to be more reliable than those for other types of 
wind tunnel walls. Assuming that the wall is rigid, Equation (2.7) is also applicable as a solid wall boundary condition for unsteady 
flows. . 

If a solid straight wall is used as a wind tunnel boundary, the streamlines forming the flow about the model are squeezed 
together more than they would be in free air. At transonic speed the reduction in effective tunnel height due to the displacement thick- 
ness of the wall boundary layer, at first glance would appear as additional blockage and result in choking at a lower Mach number than 
if no wall boundary layer was present. However, it has been demonstrated experimentally [2.3] that, due to the "comphant" nature of 
the boundary layer, its deformation under the influence of the model pressure field actually compensates to some degree for the model 
blockage, with the net result that the choking Mach number is higher than that theoretically calculated based on the geometric tunnel 
height. In the most extreme case, as the (subsonic) stream Mach number reaches the critical value, the wind tunnel becomes choked in 
the test section and thus for an appreciable speed range no transonic testing is possible in a solid wall wind tunnel. In supersonic flow 
the shock waves generated by the model are reflected from the solid walls again as shock waves. They are a source of unacceptable 
interference in case they impinge on the model. For the above reasons the test sections with straight solid walls are considered unsuit- 
able for high speed testing. However, it is possible to reduce solid wall interference by contouring the walls to resemble the streamline 
surfaces in unbounded flow past the same model (wind tunnel with flexible walls). 

2.3   Open Jet Walls 

An open jet boundary is defined as one on which the pressure perturbation is zero, that is 

P  "  Pplenum 

C- = C_ , (2.8) P Pplenum ^      ' 

In the theoretical case of an infinitely long jet and constant plenum pressure, Ppienum ~ P= ^"'^ 

Cp = 0 (2.9) 

The substitution of Equation (2.4) in (2.9) yields the homogeneous open jet boundary condition 

-=0 (2.10) 

For steady flow thus 

30 
- = 0 (2.11) 

or simply 

0 = 0 (2.12) 

It is important to point out that an open jet boundary differs from free air because in the latter case the pressure pertur- 
bations due to the presence of the model vanish, in general, only at infinity. The curvature of the open jet boundary is greater than 
that of a corresponding streamline in infinite stream, since there is no outside flow to resist the deformation. A flow pattern will be 
obtained in which the streamlines are further apart than for free flight. In supersonic flow, the shock waves are reflected from the 
open jet boundary as expansion waves. 

It is general practice to apply Equation (2.10) along the undisturbed jet boundary, assuming that the distortion is small. 
However, the usability of open jet test sections is rather limited, because of their tendency to develop pulsations, originating in the 
unstable shear layer of the jet [2.1]. 

2.4   Mean Boundary Condition for Ventilated Walls 

Opposite wall interference effects for solid and open jet boundaries were observed already by Prandtl [2.4]. The desire to 
minimize the wall interference at subsonic speeds, to avoid choking at transonic speeds and to attenuate shock wave reflections at 
supersonic speeds has led to the introduction of ventilated (partially open) wind tvmnel walls. The principle of using a combination 
of closed and open jet boundaries to minimize wall interference was established by Theodorsen [2.5], Toussaint [2.6], and 
Wieselsberger [2.7]; the first contemporary ventilated wind tunnel, using several longitudinal slots, was described by Wri^t and 
Ward [2.8]. The tunnel, put in operation in 1947, lived up to its promise concerning the prevention of choking and enabled testing 
throu^ Mach one. However, as predicted later by Goodman [2.9], improved shock wave cancellation properties for testing at 
supersonic speeds were possible with small-grain porous walls. This eventually led to the now familiar concept of a perforated wall. 

The physics of flow at a ventilated wind tunnel wall is very complex and depends, among other things, on viscous and 
boundary layer phenomena as well as the construction of the walls themselves. However, at some distance away from the wall, the 
localized effects of individual holes or slots (by which the wind tunnel is ventilated) will be integrated into more homogeneous effects, 
thereby permitting the introduction of mean or average boundary conditions. [2.10], [2.11], [2.12], [2.13] and [2.14]. A properly 
constructed mean boundary condition is expected to reduce to the boundary conditions of the solid and open jet walls if the open 
area ratio of the ventUated wall is zero and unity, respectively. In accordance with the usual mathematical terminology, we shall speak 
of a homogeneous boundary condition if the equation is linear and contains no (isolated) constant term. The advantages arising from 
linearity and superposition in the latter case are considerable. 

For perforated walls, the experimental verification of the mean boundary condition concept was provided by Gardenier [2.15], 
who studied the decay of pressure disturbances generated by the holes, as a function of the distance from the wall. As illustrated in 
Figure 2.2, for thin boundary layers the Mach number fluctuations are reduced to 0.002 at M„ = 1.2 at a distance of about 20 hole 
diameters from the wall. For slotted walls the mean boundary condition concept can be validated theoretically within the framework 
of potential flow theory [2.1]. 

As pointed out in Reference [2.16], two types of mean boundary conditions have been proposed, the so-caUed porous wall 
boundary condition, based on the viscous effect, and the slotted wall boundary condition, based on the accelerative or mass effect. 



2.5   Perforated WaUs 

The porous wall boundary condition, used for perforated and transversally slotted wind tunnel walls, is obtained by assuming 
that the average velocity of the flow normal to the wall is a linear function of the pressure drop across the wall. In the nondimensional 
form, this relationship can be vnritten as 

V              P ~ Pplenum 
^   = P — (2.13) 

where the (positive) constant of proportionality P is called the porosity parameter. It is not to be interchanged with the geometrical 
porosity of the wall (open area ratio). The reciprocal value 

R =  p " (2.14) 

is the resistance of the wall to crossflow. In the coefficient form. Equation (2.13) can be written as 

V „ *-'P ~ *"Pplenum 
u: = ^—2— • (2.15) 

or 

V <^P 
UT^^Y (2.16) 

if Pplenum   -  P». 

The boundary condition described by Equation (2.15) represents a viscous mechanism in the sense that force in the form of 
pressure is proportional to velocity. Sometimes this loosely is referred to as Darcy's law [2.17], drawing analogy with the flow of fluids 
in porous media, but that does not seem to be an appropriate attribution in the present context [2.16]. Besides, the above relationship 
can also be derived using the concept of circulation, Section 2.6. 

A detailed study of flow through an orifice in the presence of tangent (grazing) flow was given by Rogers and Hersh [2.18]. 
Using flow visualization by color dyes in a water tunnel, they identified the following distinct regimes of crossflow*: 

(1) Zero Flow (Fig. 2.3(a)) 

This regime is characterized by recirculating flow in the cavity, driven by the shear layer of the tunnel stream. Otherwise, the 
shear layer acts as a barrier to crossflow. 

(2) Low Inflow (Fig. 2.3(b)) 

The plenum pressure is sufficient to lift the dividing stream surface. The circulatory motion inside the cavity subsides as 
orifice flow increases. The detached shear layer acts like a lid, controlling inflow. 

(3) Low Outflow (Fig. 2.3(c)) 

The circulatory flow is confined to a separated region off the upstream lip of the orifice. The change of the size of this 
separated region provides the mechanism for controlling outflow. 

(4) High Inflow (Fig. 2.3(d)) 

The shear layer no longer exercises control over inflow. A minimum flow area is established (vena contracta effect). 

(5) High Outflow (Fig. 2.3(e)) 

The separated flow region inside the cavity is reduced to minimum (vena contracta) and has no further control over outflow. 

From the above physical picture it is sufficiently clear that the linear boundary condition (2.15), based on the viscous flow 
mechanism is plausible only for low flow regimes. It is generally conceded that one must rely on experiments to establish the resistance 
(or porosity parameter) for a given wall geometry, Reynolds number and Mach number. Rogers and Hersh [2.18] have shown that the 
wall resistance measurements can be correlated when plotted in terms of the discharge coefficient vs. orifice velocity, normalized by 
the tunnel stream velocity. 

Using Equations (2.14) and (2.16), we define the orifice resistance 

Ri  = —— (2.17) 
* i 

2  
U„ 

where V^ is the orifice inlet velocity. Introducing the (incompressible flow) discharge coefficient [2.18] 

*In agreement with Reference [2.1 ] and contrary to Reference [2.18], the terms "inflow" and "outflow" are applied with respect to the test section and not 
plenum. 



Cd 

V; 

Vid 

where 

is the ideal velocity, we obtain 

Vid = U. Cp^ 

1 
R) = - 

2 ^2 
*^d 

For a perforated wall of small open area ratio, 6 ^ 1, the averaged normal velocity can be approximated as 

6 
V - V. 

so that the total resistance of the wall is 

'1-5 

1- 6 
n ~Ri -^ (2.18) 

From crossflow measurements on single orifices [2.18] and clusters of orifices [2.19], it appears that the discharge coefficient 
for low inflow is proportional to the velocity ratio Vj/U^ raised to a power slightly greater than 1/2, but for low outflow the power is 
slightly less than 1/2, see Figures 2.4 and 2.5. If we accept [2.18] 

as a fair approximation, then R = constant, and the linear relationship between Cp and V/U„ is obtained. So far, a truly linear 
dependence has been estabhshed only for some porous materials, cf. Figure 2.6, where the exponent is 1/2 both for inflow and out- 
flow. 

From Figure 2.5, representing a sample of perforated wall with normal holes, another important observation can be made: 
except for very small velocity ratios, the discharge coefficient for inflow is greater than that for outflow. Denoting by subscripts "in' 
and "out" inflow and outflow respectively, we can thus write 

^in   < Rout 

or, with respect to Equation (2.14) 

This behaviour of waUs with normal perforations was studied in detail by Budoff and Zorumski [2.20] and incorporated into the wall 
interference corrections by Mokry, Peake and Bowker [2.21], see also Chapter 5. 

For high flow rates, we verify from Figures 2.4 to 2.6 that the discharge coefficient reaches its maximum value* and is 
further independent of Vj/U^. According to the above analysis R^ ~ (Vj/U^ f. Fortunately, the high crossflow rates are not typical 
for the operation of wind tunnels in normal test conditions (small models and plenum pressure close to the free stream static pressure). 

The effect of the boundary layer thickness on the orifice discharge is illustrated in Figure 2.7. We can see that by increasing 
the displacement thickness to orifice diameter ratio, 6*/d, the discharge increases, that is the resistance is reduced. This applies to both 
outflow and inflow. As earlier pointed out by Lukasiewicz [2.22], the thicker the boundary layer, the more a wall behaves like a free 
boundary. 

The effect of the orifice depth (wall thickness) to diameter ratio, b/d, on the discharge coefficient is illustrated in Figure 2.8. 
For outflow, the effect extends throughout a whole range or orifice to grazing flow ratios. The thinner the wall the less stagnation 
occurs, so that more fluid is deflected and captured by the opening. For inflow, the effect of b/d is for obvious physical reasons much 
less pronounced. 

Regarding the difference between outflow and inflow resistances, it was quite early demonstrated by Chew [2.23] that it can 
be eliminated by suitably inclining the holes toward the stream. The idea, depicted in Figure 2.9, is to reduce the turning angle for the 
high momentum air flowing out of the test section. Examples of crossflow curves for walls with normal and inclined holes are given in 
Figure 2.10. As we can judge from the outflow curves and small available portions of the inflow curves, roughly the same outflow and 
inflow resistance is achieved for a 6% perforated waU with 60° inclined holes. The open area ratio plays here a very important role: the 
resistance equaUzation effect is clearly overdone for the 12% perforated wall with 60° inclined holes. 

*Close to the discharge coefficient for nongrazing flow, denoted as Cd   in Figure 2.5. 
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We may also notice that the crossflow curves for walls with inclined holes do not pass through the origin. It is due to the fact 
that forward inclined holes can scoop certain amount of the test section mass flow at zero pressure difference across the wall. As a 
result, walls with inclined holes have a tendency to estabhsh a pressure difference between the plenum and the test section when the 
flow is essentially parallel to the walls [2.1]. It is then logical to modify the linear boundary condition (2.15) to 

V - V„          C. - C. ,  o   ^  ^_p ppjenum 

U„ 2 

where V,, is the normal component of velocity at zero pressure difference. 

Substituting from Equations (2.3), (2.4) and (2.5) and dropping the partial time derivative, we obtain the porous wall 
boundary condition for steady flows 

9(4     1 90 
- + --^ = C (2.20) 

where 

9x    P 9n 

iVo      1 
C = C_ , (2.2X) 

P U 2     "plenum ^ ' 

For perforated walls with normal holes V^ ^ 0 and the constant term takes the form [2.24] 

Pplenum 

1 p- 
C = - -C. , =   (2.22) 

where K is the ratio of specific heats (1.4 for air). The homogeneous boundary condition 

30     1 90 
r^ + -T^ = 0 (2.23) 
9x     P on 

corresponding to (2.16), was first applied to wall interference analysis by Goodman [2.10]. The inhomogeneous one. Equation (2.20), 
suggested by Ebihara [2.25], was used in wall interference computations by Sloof and Piers [2.26] and Sychev and Fonarev [2.24]. 

Crossflow, subject to the development of wall boundary layers in a nonuniform pressure field, was first systematically studied 
by Jacocks [2.27]. For a perforated wall wind tunnel the boundary layer development along the wall becomes very compUcated due to 
the inflow and outflow induced by the pressure field. The outflow reduces the boundary layer thickness and the inflow greatly exag- 
gerates its growth. In Jacock's experiment the effect of the airfoU was modeled by contouring the bottom solid wall, as shown in 
Figure 2.11. Detailed distributions of pressures and flow angles along the upper ventilated wall were measured by a static pressure tube 
and a laser doppler velocimeter, respectively. A limited number of boundary layer surveys were made with multiple-tube pitot pressure 
rakes. The obtained crossflow diagram in the lower portion of the same figure shows the inability of any straight line to be an accurate 
representation of the boundary condition. The geometries of other selected waU contours (bumps) are given in Figure 2.12; the dashed 
lines represent the boundary layer displacement thickness. The induced static pressure distributions along the perforated wall are in 
Figure 2.13 and the corresponding crossflow diagrams are in Figure 2.14. The observed nonlinearity and dissimilarity of the crossflow 
curves, representing the behaviour of perforated walls in actual tunnel test conditions, is more than discouraging. The Mach number 
effect, documented in Figure 2.15, is relatively consistent. It is seen that the slope of the central portions of the Cp vs. V/U„ curves is 
steeper for higher M„, which indicates that the porosity parameter decreases as the Mach number grows. However, as pointed out by 
Jacocks, this is largely due to the reduction of the boundary layer thickness with increased M„. 

It is not without interest that Kemp [2.28], [2.29] produced crossflow curves of a similar type from actual tunnel measure- 
ments, using the measured wall and airfoil pressure distributions and computing the flow angles at the walls. An example of computed 
pressure-crossflow diagrams for a 20% normal perforated wall from his unpublished work [2.30] is shown in Figure 2.16. Different 
relative positions of the outflow and inflow branches is achieved by specifying different flow inclination, V„/U„, far upstream. 

From the above flow measurements and computations it would appear that the actual response of a perforated wall is highly 
nonlinear and "model-dependent" and cannot be described in terms of tunnel stream parameters. Among the missing correlation 
factors is, of course, the boundary layer development. This problem was addressed by Chan [2.31], [2.32], who performed experi- 
mental studies of the variation of the flow parameters along the wall. The boundary layer profile was measured by pitot rakes at three 
streamwise stations along 20% perforated test section walls with normal holes, in the presence of a transonic airfoil. The wall crossflow 
characteristics were then calculated from the data by means of a boundary layer computational code [2.33]. The resulting pressure- 
crossflow relations at the wall are found to be highly nonlinear as shown in Figure 2.17, and are closely similar to those measured by 
Jacocks [2.27]. It is also interesting to note that the linear pressure-crossflow relation deduced from waU pressure measurements [2.21] 
passes through all nonlinear curves and presents a relation averaged over the tunnel wall. The normal velocity at the edge of the bound- 
ary layer, including the displacement effect and the crossflow in the inflow region of the waU, is shown to be about three times that 
of the crossflow alone. By taking the boundary layer into account, the pressure-crossflow relations at the wall collapse into a single 
correlation curve. Figure 2.18. When the boundary layer eventually thickens downstream, the dependence of the wall characteristics 
on the boundary layer diminishes and the pressure-crossflow relation becomes linear, as shown in Figure 2.19. With these empirical 
correlations the boundary layer development along the wall can be calculated by an iterative scheme for a given test condition. The 
normal velocity at the outer edge of the boundary layer then provides the boundary condition for the calculation of the interference 
flow in the test section, A similar scheme has also been proposed by Freestone and Henington [2.34]. In view of the complexity of the 
interactive relations between the wall characteristics, the boundary layer growth and the inviscid flow in the tunnel, lengthy calculations 
are required for post-test estimation of wall interference. It is more practical to bypass the comphcated flow development by establish- 
ing the boundary condition outside this region, such as measuring the flow parameters a short distance away from the wall, in the axial 
direction of the tunnel. Correction methods have been well developed for flow with outer boundary conditions specified, see Chapter 6. 



The behaviour of perforated walls In unsteady flow conditions is much less understood. Recently, the state of knowledge has 
been rapidly improving thanks to related research efforts in the reduction of jet engine noise by cavity-backed perforated liners. 

For harmonic oscillation vrith angular frequency cj, we take 

0 (x,y,t) = 0 (x,y) e'"" (2.24) 

where 4> is the complex amplitude of the disturbance velocity potential. A formal substitution of Equations (2.3) to (2.5) in (2.16) 
yields 

/ 3 CO \ ..     1 90 

where explicit dependence on the factor exp (icot) has been eliminated. This boundary condition, earlier proposed in Reference [2.35], 
is appropriate to quasi-steady flows (small cj/U„). 

Based on the acoustic behaviour of cavity-backed orifices (Helmholz resonators), it is reasonable to expect that besides the 
steady-flow resistance effect there also exists a phase lag between the pressure drop and normal velocity. Accordingly, Equation (2.25) 
should be modified to 

fe^^u:)* 
30 

+ Z— = 0 (2.26) 
3n 

where the complex quantity 

Z = R + iS (2.27) 

is the impedance, R = 1/P is the resistance and S is the reactance. The resistance is a viscous phenomenon whereas the reactance is 
essentially of inviscid nature, related to the inertia of oscillating flow in the neighbourhood of the orifice [2.36]. 

The experiments of Thurston et al. [2.37] and Ingard and Ising [2.38] with single orifices in nongrazing flow conditions 
indicate that at low sound pressure levels there is a 90° phase lag of the normal velocity behind the driving pressure. This implies that 
in such conditions the resistance is very small relative to reactance, R < S. The relevant experimental results are summarized in 
Figures 2.20 and 2.21, in terms of orifice resistance* Rj and orifice reactance* S; plotted against the inlet velocity amphtude Vj. A 
simUar result was also obtained analytically [2.39]. Applying this result to Equations (2.26) and (2.27), we obtain the boundary 
condition 

3x*'u^j 0 + iS — = 0 (2.28) 

for highly oscillatory flows (large a)/U„). 

Based on Ingard's reactance formula [2.38] for a single orifice and the theoretical analysis of the grazing flow effect by 
Hersh and Rogers [2.36], Mabey [2.40] suggested the following expression for the reactance of the perforated wall 

CO 1- S 
S = — (0.85d + b)-^ (2.29) 

where d is the orifice diameter and b is the wall thickness. The empirical factor 0.85 represents the mass end correction of the 
orifice [2.38]. The application of the open area ratio 6 is simUar to that in Equation (2.18). For larger values of 6 we expect acoustic 
interaction of orifices, so that it is preferable to use the Fok-Melling porosity correction, described in References [2.41] and [2.42]. 

In order to be able to specify the impedance Z for general oscillatory flow conditions (between the above extreme cases), 
much more information is needed regarding the interaction of the oscUlatory orifice flow and the grazing flow. Earher, it was 
theorized [2.43] that orifice reactance is not a function of grazing flow velocity, but this does not seem to be the case [2.42]. 
Figure 2.22, sketched from the visual studies of Baumeister and Rice [2.44], shows various stages of low amplitude flow through an 
orifice in the presence of grazing flow. The appreciable difference between the outflow and inflow regimes, which is of the same 
character as that observed earlier in steady flow, indicates that impedances for the inflow and outflow half-cycles are hkely to differ. 
During the flow reversal, outflow and inflow exist simultaneously in different parts of the orifice, and hence no discontinuity in 
resistance will exist in an oscillatory system when the average orifice velocity approaches zero from either the outflow or inflow 
directions [2.44]. 

With a higher oscillating flow amplitude. Figure 2.23, the dye streamline is seen to be bent at steeper angles towards the 
orifice plate and the effective flow area of the orifice is increased. In the hmit of high orifice flow amplitude the nongrazing flow 
pattern would eventually be achieved. 

2.6   TransversaUy Slotted Walls 

The porous wall boundary condition is also applicable to walls with transversal slots. If the wall is thin, the viscous effects 
manifest themselves mainly by circulation, so that the force acting on the wall can be determined from the Kutta-Joukowski condition, 
as for thin airfoils. Since the theoretical case of a thin, transversally slotted waU is important to an understanding of the mean boundary 
condition concept for a combination of closed and open jet boundaries, it is elaborated on here. 

*In the absence ot grazing flow, U„ = 0, impedance is defined simply as the ratio ot amplitudes of driving pressure and orifice velocity; therefore dimensioned 
as kg m     s    . 
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Referring to Figure 2.24, we solve for the complex disturbance velocity 

, ,       90    .9* 
w(z) = 7— 1 — 

ox      oy 

which is an analytic function of 

z = X + iy 

in the lower half-plane, y < 0, and subject to the boundary conditions 

Rew(x) = 0,        n£- —<x<n£ + — 
"' '        ' 2 2 

Im w(x) = 0,        n« +- < x < (n+1) i-^ 

In addition, w satisfies the Kutta-Joukowski condition 

„    a 
w(x) = 0,        x = nic  

2 

which represents the viscous flow mechanism (lift effect). Here a is the slot width and J is the slot spacing. The above mixed 
boundary value problem is a special case of the Keldysh-Sedov problem [2.45], whose solution is [2.46] 

w(z) = A    /     (2.30) 
TT   /     a\ 

L —   (Z I 
K   \     2/ 

a 
where A is an arbitrary real constant. Similarly to the thin airfoil theory, the velocity is finite at the trailing edges, z = n£ - —, but is 

a ^ 
singular at the leading edges, z = n8 + —. 

Taking the limit y -* - oo, we obtain 

)£» 
2 8 

w(x - i°°) = A e 

so that far from the wall 

30 
— = A cos 
ax (il) 
30 

= - A sin (if) 3y 

Eliminating the unknown constant A, we arrive at the porous wall boundary condition 

30    1 30 ■■ 
T^ + -r^= 0 (2.31) 
3x    P 3y 

cf. Equation (2.23), where 

P = tan(Jf) (2.32) 

It is seen that P increases monotonically with the open area ratio a/£ and that in the limits a/£ -^ 0 and a/8 -*• 1 the expected boundary 
conditions for solid and open jet boundaries are attained. Finally, accounting for compressibility by the transformation x -^ x/|3 we 
obtain 

P = ^tangl) (2.33) 

Within the framework of the linearized potential theory, the value P/j3 is thus a constant, determined by the open area ratio of the wall. 
The decrease of the porosity parameter with the increase of the Mach number for transversally slotted wall is similar to the trend 
observed experimentally for perforated walls in Figure 2.15. 
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It is important to note that in the present flow model it was assumed that 3<^/9x = 0 in the slots (ideal slot condition) and 
that the solution in the upper half plane (plenum) was generally of no interest. In fact, a different analytic continuation of w across 
the slots can be obtained by the selection of the branch of the square root function in Equation (2.30). It can be shown that if the cut 
is along the negative semi-axis, the solution is discontinuous across the slot, whereas if the cut is along the positive semi-axis, the 
solution is continuous. In the latter case we can imagine that the wall acts like a lattice of lifting airfoils in unbounded flow. Using this 
approach, the derivation of the porosity parameter for a transversally slotted wall was given by Goethert [2.1]; the resultant value is, 
of course, the same. 

If the wall is thick, the flow in the transverse slots becomes partly separated and the potential flow modeling is no longer 
reliable, except perhaps when the slats are shaped as actual airfoils with sharp trailing edges, see Figure 2.25. As shown experimentally 
by Williams and Parkinson [2.47], [2.48], the crossflow properties of this type of wall, when operated within the unstalled incidence 
range (low crossflow regime), are predictable from potential flow theory. For transonic or supersonic speeds the transversally slotted 
waU is unsuitable, since it generates two-dimensional disturbances (plane Mach waves). 

2.7   Longitudinally Slotted Walls 

In contrast to perforated or transversally slotted walls, the flow through a wall with longitudinal slots is not necessarily 
dominated by viscosity [2.49]. The boundary condition for a longitudinally slotted wall can thus be derived from the component of 
Euler's equation normal to the wall. Assuming V < U„ and approximating the pressure gradient by the finite difference quotient, we 
obtain 

dV 1    P" Pplenum 
— =  (2.34) 
dt       p„ K 

where the constant K, called the slot parameter, has the dimension of length. In two-dimensional wall interference the slot parameter 
often appears nondimensionalized by half a tunnel height: 

2K 
F = — (2.35) 

Using Equations (2.1) to (2.3), the slotted wall boundary condition can also be written 

1    d  /30\       1 
K —    =-(C.-C-,        ) (2.36) 

U„  dt   \an/ 2       P        Pplenum' ' 

Substituting Equation (2.4) in (2.36), we obtain 

acp 
C_+K-^— = C. , (2.37) 9n Pplenum ^ '' 

which is particularly suitable for unsteady flow calculations, since the total time derivative is eliminated. For steady flow. 
Equation (2.3) yields 

1 3^0 
- (Cn - C„ ,        ) = K  (2.38) 
2 P        Pplenum' gx3n 

This boundary condition expresses linear dependence between the pressure difference and the centrifugal force due to stream- 
line curvature. Accordingly, walls with longitudinal slots, as one of their major advantages, can support an outflow from the test section 
even when the static pressure in the test section is smaller than that in the plenum chamber [2.51]. Perforated walls are too unyielding 
in this regard. 

An alternative form of Equation (2.38) is 

T^+K:—7^ = C (2.39) 
ox        ox3n 

where C is given by Equation (2.22). If Ppienum ~ P- > then the constant term vanishes and the boundary condition becomes 
homogeneous: 

30 3^0 
-^+K-—- =0 (2.40) 
ox        oxon 

If the condition V <^ U^ is not satisfied, as for a large pressure difference between the undisturbed test section and plenum 
pressiures, it may be necessary to include in Equation (2.34) also quadratic velocity terms [2.50], [2.53], [2.54]. Using an approximate 
integration of the momentum equation along a suitable path from the slat centre into the plenum, Bemdt [2.53], [2.55] proposed 
the following nonlinear boundary condition 

3^0     1 /l MV 
3x3n    2 \a 3n/ 

-(C_-C. ,        ) = K—^ + -(--^1 (2.41) 2 ^   P        Pplenum-^ ^..ri..      n  \ -   i^ I ^ •' 

where E is the distance between the slots and a is the slot width. Figure 2.26. The pressure difference across the wall is seen to be the 
sum of the streamline curvature effect and the crossflow Bernoulli effect. 
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Since the longitudinal slots introduce periodic flow disturbances normal to the flow plane, a rigorous determination of the 
slot parameter is rather difficult. A simpler approach is to assume that the flow is quasiplanar, i.e. that the crossflow produced by the 
slots is only a small perturbation of the basic two-dimensional flow. These flows are considered to be independent, except for a linking 
through the boundary condition at the wall. The method thus has much in common with the slender body theory [2.14]. 

Using the co-ordinate system of Figure 2.26, where the y axis is along the outward normal to the wall and the z axis is normal 
to the slots in the waU plane, the three-dimensional disturbance velocity potential $ can be decomposed as [2.52]. 

*(x,y,z)   ~   0(x,y)  + Q(x) f(y,z) (2.42) 

Here 0 is the two-dimensional potential satisfying the mean boundary condition (2.40), Q is a "slowly varying" function of x and f is 
the crossflow potential, satisfying 

a^f     3^f 

ay2    3z2 
y<0 (2.43) 

and the far field condition 

f->-0    as    y-* - °° 

The condition of vanishing pressure disturbances in the slots (open portions of the wall) is 

3* 

(2.44) 

ax 
(x,0,z) =0, n8--< z < n8+- 

2 2 

and, similarly, the condition of the vanishing normal component of velocity on the slats (solid portions of the wall) is 

a$ a a 
— (x,0,z) = 0, nS+-< z < (n+l))^-- 
^y ^  '  ' -^ 2 ^       ^       2 

Substituting from Equation (2.42), the above conditions become 

d(t> 
,   (x,0) + Q'(x) f(0,z) = 0, n£ - - < z < n« + - 
ax 2 2 

(2.45) 

a0 3f 
-^(x,0) + Q(x) —(0,z) = 0, 
dy dy 

nK+- < z < (n+l)2-- 
2 2 

(2.46) 

They can be satisfied only if 

f(0,z) = f(0,0) = constant, n)2--<z<nS+- (2.47) 

af a a 
T— (0,z) = c = constant, nE +— < z < (n+1) )2 - — 
dy 2 2 

(2.48) 

From Equations (2.46) and (2.48) thus 

and substituting in Equation (2.45) 

1  d<t> 
Q(x) = ---^(x,0) 

c   dy 

30 f(0,0)   3^0 
r^(x,0)--^^—-(x,0) = 0 
dx c      dxdy 

which is recognized as the slotted wall boimdary condition (2.40) with 

(2.49) 

Taking into account periodicity and symmetry and using Equations (2.43), (2.44), (2.47) and (2.48), the crossflow potential 
can be constructed as a solution of the following boundary value problem, see the lower portion of Figure 2.26 
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 (y,z) + — (y,z) = 0, -°°<y<0,    0<z<- 
ay2 9z2 2 

3f a 
— (0,z) = 0, 0< z <- 
oz 2 

af a S. 
-(0,z) = c, -<z<- 

af 
— (y,0) = 0, - c» < y < 0 
az 

af     a 
— (y.7-) = 0, -~<y < 0 oz       Z 

z 
f (- ~,z) = 0, 0 < z < - (2.50) 

Using conforraal mapping, the solution is found as the superposition of parallel flow and source flow [2.52]: 

f(x,y) = c Re   y+iz + - log f- sinh ^TT ^~-) + Jsinh^ (ir ^j + sin^ (~j\ I (2.51) 

The substitution in Equation(2.49) yields the value of the slot parameter 

■ e 1 
K = -log  (2.52) 

IT 

■gf) 
that was first obtained by Lamb, when solving the problem of the propagation of acoustic waves through slotted screens [2.56]. For 
small open area ratios 

i        /2 8\ 
K ^ - log( 1 (2.53) 

TT        \7r a/ 

For steady wind tunnel flow, the theoretical values (2.52) or (2.53) were confirmed by several authors [2.11], [2.12], [2.14], [2.46]. 
A different value of K was obtained by Chen and Mears [2.13], but their crossflow model (generated by doublet rods) is not nearly as 
meaningful, see for a discussion References [2.57] and [2.58]. 

Equation (2.52) shows that on the interval 1 > a/E > 0 the slot parameter is positive and increases monotonically as a/K 
decreases. In the limit a/9. = 1 we obtain K = 0 and Equation (2.37) simplifies to the boundary condition (2.11) for open jet walls. As 
a/S.-^0,K-*°° and Equation (2.40) reduces to 

a 30 • 
— T- = 0 (2.54) 
ax an 

which contains, as a particular case, the boundary condition (2.7) for sohd walls. A more detailed picture of the possible values of the 
slot parameter can be obtained from Figure 2.27. There the nondimensional parameter 

1 + F 2K 
1 + — 

h 

(2.55) 

is plotted as a function of the open area ratio, a/K, and the slot spacing/tunnel height ratio, £/h. The limiting values i// = 0 and i/( = 1 
represent closed wall and open jet conditions respectively. As we shall see in Section 3, a significant part of the incidence correction is 
just proportional to i//. 

As in the case of transversally slotted walls, there is no need to model the flow outside the test section if the condition of 
zero pressure disturbance in the slots is used. The solution can be analytically continued across the slots in a variety of ways (i.e. by 
selection of flow boundaries) without affecting the value of the slot parameter. In theory, the slot parameter (2.52) is thus applicable to 
both inflow and outflow. Unfortunately, in real physical situations the condition of zero pressure disturbance in the slots, on which the 
present theory rests, is not necessarily valid. 

Using the kinetic energy relations, Davis and Moore [2.11] derived for a longitudinally slotted wall of thickness b the 
approximate value of the slot parameter 

K = K   - log + - (2.56) 
n TT a       a 

sin  
2 S 
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The importance of the thickness term b/a is appreciated from Figures 2.27 to 2.30, where the parameter i// is plotted for the cases 
b/a = 0.0, 0.2, 0.5, and 1.0. However, the formula (2.56) was derived assuming the plenum pressure boundary to be located on the line 
between the slot edges on the plenum side. As the authors of Reference [2.11] point out, the actual location of the plenum pressure 
boundary in the slot is a function of the local outflow and inflow. 

A more detailed study of the problem was subsequently undertaken by Bemdt and Sorensen [2.53]. The value of the slot 
parameter they arrived at is 

K = S log- 

(ii) 
■ + k„ (2.57) 

where [2.49] 

1   / 8\ 
- (l- log-1   ~   0.02 (2.58) 

The quantity bp, satisfying 0 < bp < b, is the depth of penetration of the test section flow into the slot. Figure 2.31. Since b- varies 
with the streamwise co-ordinate x in dependence on the pressure field generated by the airfoil, we can state that K is also a function 
of X. The situation is thus similar to perforated walls, where the dependence of P on x has been observed experimentally. If bp = b. 
Equation (2.57) agrees, apart from the (small) constant term kp, with the earlier given formula by Davis and Moore, Equation (2.56). 

It was observed experimentally that for larger outflows, bp > b, the flow remains attached inside the slot, but separates at 
the slot edges on the plenum side, i.e. the test section air enters the plenum in the form of narrow, high momentum jets. Bemdt and 
Sorensen [2.53] modeled this type of flow on a doubly infinite strip, as illustrated in Figiure 2.32(a). The corresponding slot parameter 
is 

K = £ -log ■ 
b 

■ + -+k. 
/TT a \     a 

sin I —— I 
\2 «/ 

(2.59) 

where 

•^^=7   (l-'°g7)"0-24 (2.60) 

Theoretical analysis of Reference [2.53] also indicates that if the pressure coefficient Cp is formed from the static pressure on the slat 
centre line. Equation (2.41) remains formally valid, except that 

k, = i   (l~log- 0.46 (2.61) 

There are, however, a number of theoretical outflow models that may give different values of K. For example, treating the 
constant pressure boundaries as true free jet streamlines (vena contracta effect), Figure 2.32(b), Barnwell [2.57] obtained for a thin, 
slotted wall and a< i 

K = 8 
"1       /2 e\ 
-log +kf (2.62) 

The constant 

1        2 + 7r 
kf log    ==   - 0.14 

TT 8 
(2.63) 

is negative, in contrast to the Bemdt-Sorensen formula. Equations (2.59) and (2.60). To retain the same configuration for the inflow 
with a mere reversal of the crossflow direction is not advisable, since there is a sufficient experimental evidence [2.53] that the low 
momentum plenum air entering the test section does not form jets, but rather separation bubbles over the slots. 

The modeling of the mixed outflow-inflow regimes is even more complicated because of the "history effect" of the jet flow. 
Depending on tunnel conditions, a small amount of the slot air returns with high momentum to the test section, eventually followed by 
the low momentum plenum air. This implies that any mathematical formulation of the slot condition must keep track of the flow into 
and out of the plenum chamber and, possibly, no purely local boundary condition, for example that given by Equation (2.40), could 
then be adequate [2.34]. Based on slot flow visualization in Reference [2.53], several tentative crossflow patterns have been suggested 
by Bemdt [2.49]. An example amenable to theoretical analysis is shown schematically in Figure 2.33. 

More recently, Everhart and Barnwell have suggested [2.59] that the slot parameter, too, should be obtained experimentally 
for the particular wall geometry and flow conditions. From Equation (2.37) 

K = 
Pplenum        P 

(2.64) 

an 
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where the values of Cp and 3Cp/3n can be obtained using the static pressure measurement along two rows of pressure orifices, parallel to 
the tested wall. Referring to Figure 2.34, midway between two orifices 

Cp  -    ^(Cpi + Cp^) 

and 

3Cp Cp_| - Cp2 

3n ^2 - b^ 

where b^ and b2 are the distances of the rows 1 and 2 from the tested wall. 

An alternative method for the evaluation of the slot parameter from pressure measurements along the slat centre line, 
supported by a detailed theoretical analysis of flow in the vicinity of the wall, was suggested by Bemdt [2.60]. 

The comparison of experimental slot parameters, obtained by Everhart and Barnwell [2.59] and Bemdt and Sorensen [2.53] 
in the outflow mode, is shown in Figure 2.35. The values of K/£ + the leading logarithmic term, plotted against b/a, are scattered not far 
from the unit slope line which intercepts the axis of ordinates at 0.46, in accordance with the theoretical prediction of Equations (2.59) 
and (2.61). 

2.8   Porous-slotted Boundary Condition 

The homogeneous, steady-flow boundary conditions (2.23) and (2.40) can be combined into the porous-slotted boundary 
condition 

_a_ 
9x 

/ 30 \      1 30 

which is due to Baldwin, Turner and Knechtel [2.52]. It contains as special cases 

(i)    solid boundary: P   = 0 

(ii)     open jet boundary: K  = 1/P = 0 

(iii)    porous boundary: K  = 0 

(iv)    slotted boundary:        1/P  =0 

and hence results derived from it will be applicable, in theory, to all possible tunnel conditions. 

Furthermore, it was suggested [2.52] to use the porous-slotted boundary condition for longitudinally slotted walls with 
viscous effects. This hypothesis was partly confirmed by Jacocks [2.27], who for slotted walls detected a strong dependence of V/U„ 
on Cp, similar to that found for perforated walls. An example of a typical experimental result is given in Figure 2.36; unfortunately no 
reference at all is made to a 320/3x3n term. Earlier, Parkinson and Lim [2.61] also reported a case of a longitudinally slotted wall that 
seemed to be better represented by the porous, rather than the slotted wall boundary condition. In contrast, some other authors [2.53], 
[2.59] feel, based on their ovra analyses and experiments, that the inclusion of the "porous term" in the slotted wall boundary condi- 
tion is unjustified. Thus, the influence of viscosity on slotted wall flows seems to remain an unresolved issue [2.51], [2.54]. 

Lofgren [2.62], following a different line of thought, derived for viscous flow at the longitudinal slots the boundary 
condition 

30 ^     3^0       ^    330 

3: 
+ ^1 TV " ^2 —7 (2.66) oxon a^3 

which is consistent with replacing in Equation (2.34) the normal component of the Euler equation by that of the Navier-Stokes 
equation. As the boundary layer thickness is reduced to zero, the coefficients Xj and Xg tend to the limits K and 0 respectively, so that 
the inviscid boundary condition (2.40) is recovered. Unfortunately, further appUcation of Equation (2.66) in wall interference theory 
does not seem to have been made. 
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Fig. 2.8    Effect of length — diameter ratio (b/d) discharge coefficient (Cj) 
(adapted firom Ref. [2.18]) 
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Fig. 2.10    Comparison of crossflow characteristics for walls with normal and inclined holes at M = 1.0 
(adapted from Ref. [2.23]) 
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Fig. 2.11    Cross-flow curve based on measurements of Cp and V along a ventilated wall 
(adapted from Ref. [2.27]) 
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(adapted from Ref. [2.27]) 
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Fig. 2.16    Computed crossflow curves for perforated walls 
(adapted from Ref. [2.30]) 
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Fig. 2.17    Normal velocity — pressure relations at the edge of the boundary layer of a perforated wall 
(Ref. [2.32]) 
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3.0 ASYMPTOTIC ANALYSIS OF TUNNEL WALL INIERFERENCE 

3.1 Introduction 

The foundation of the theoretical treatment of wind-tunnel wall interference was laid by Prandtl in 1919 [3.1], [3.2]. He 
showed that the constraint imposed on the flow by the walls could be defined as an exterior boundary condition. To obtain the actual 
flow in the wind tunnel it is necessary to superimpose an interference flow to the basic free air flow satisfying the boundary condition 
at the wall. Since that time a large amount of work on wall interference has been advanced following Prandtl's approach. 

Prandtl's approach to the problem is clearly asymptotic in nature. It falls in the same category as that of the two well known 
asymptotic theories of his, namely the boundary layer theory and the lifting line theory, which led to the development of the method 
of singular perturbation [3.3]. With this mathematical technique the wall interference problem can be reformulated in the same manner 
as the other two theories. The singular nature of the problem is shown by the two reference length scales associated with the problem. 
Away from the airfoil the characteristic length is the tunnel height while near the model its chord becomes the characteristic length. 
The ratio of these two reference lengths vanishes if the tunnel height is much greater than the chord of the airfoil. The singular nature 
has indeed been demonstrated by the classical analysis of the problem, in which the far field solutions are obtained for vanishing ratio 
of chord to tunnel height. 

For subsonic linear flow the asymptotic analysis will add little information to the vast existing knowledge of the subject. The 
merit of the analysis, however, should be based on its systematic approximation of the original problem and providing the means of 
formulation of the boundary value problems in proper order. The asymptotic analysis delineates explicitly the physical characteristics 
of the problem without solving it completely. This is particularly important for transonic flows in that the governing equations are non- 
linear and the solutions can only be obtained by numerical methods with large amounts of computations. 

A study in this direction is made by Chan [3.4], [3.5] for a tunnel with perforated walls. The incompressible flow is first 
treated and the procedure is then applied to transonic flows. The analysis leads to a proper formulation of the boundary value problem 
for the tunnel wall interference. The result yields explicitly the apparent angle of attack and the blockage due to the wall constraint, 
and for transonic flow, an effective blockage induced by the nonlinear compressibility. For solid wall interference at transonic speeds 
a similar analysis was performed by Cole, Malmuth and Zeigler [3.6] including numerical solutions up to the first order. At transonic 
speeds with free stream Mach number near unity, asymptotic solutions were obtained for perforated walls by Lifshits and Fonarev [3.7] 
for bodies of revolution and by Blynskaya and Lifshits [3.8] for two-dimensional airfoils. 

In this chapter the asymptotic analysis is derived for both the incompressible and the compressible, transonic, flow cases. In 
each case the outer and inner limits are first discussed, followed by a description of the procedure employed for matching the two. 

3.2 Incompressible Flow 

3.2.1   Formulation 

The wind tunnel wall interference problem is now presented in the formalism of the method of matched asymptotic 
expansions. Although the flow is assumed to be incompressible the results can be extended to linear subsonic flow with a compress- 
ibility transformation. The applications of the procedure to transonic flows with nonlinear governing equations will be presented in 
Section 3.3. 

Within the framework of small perturbation theory the equation governing the flow inside the tunnel can be written in 
terms of the perturbation velocity potential 

+ ( 
XX 

=0 (3.1) 

where x and y are the Cartesian co-ordinates normalized by the chord of the model c. The airfoil has a maximum thickness t and is at 
an angle of attack a. Both t and a are assumed to be small. The boundary condition on the airfoil requires the flow to be tangent to the 
surface. Thus, within the small disturbance theory, the boundary condition can be written as 

0_ (X, ±0) = ±f_-a, "i*^^^| (^-^^ 

where f is the thickness distribution of the airfoil. The tunnel walls are located at a distance H* above and below the model and are 
assumed to be perforated for flow ventilation. The boundary condition at the walls is thus 

0_±j.^_ = 0 at y = ±H (3.3) 

where P is the porosity factor and H the tunnel half height normalized by the chord c. In the limits that P tends to zero or infinity, the 
boundary condition reduces to that of solid walls or a free jet respectively. The perforated wall boundary condition is more general 
than the limiting cases and part of the results can also be applied to transonic flows analysed in a later section. The other wall con- 
figuration such as slotted wall, can also be treated in a similar manner. Far up- and down-stream, the perturbations tend to zero and 
the boundary conditions become 

0_, 0_ ^ 0 as x2 + y2 ^- oo (3.4) 

The boundary value problem is fully defined by Equations (3.1) to (3.4). Asymptotic analysis is now applied to the outer region near 
the tunnel wall and the inner region around the airfoil. The solutions are than matched as these two regions approach each other in the 
limit. 

3.2.2   Outer Limit 

Away from the airfoil the characteristic length of the flow is the tunnel half height H. The length variables should therefore 
be normalized by the reference scale H as 
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X y 

H   •^       H (3.5) 

As H ->■ oo with X, y fixed, the airfoil shrinks to a point with all singularities concentrated on it. The potential 0 can be expanded in an 
asymptotic series in ascending power of 1/H as 

/       1\ 1 1 
*lx,y;-l = 'i>o(x,y)+-<^i(x,y) + — <t>2(^,y) (3.6) 

H2 

Substituting the series into the governing equation, Equation (3.1), we have 

*n^x "" *nyy  =0, n = 0,1,2,.. . (3.7) 

The zero order solution i^g is therefore the free air solution and the higher order solutions are the interference solutions. The inter- 
ference solutions should satisfy the boundary condition at the wall. Equation (3.3) 

^V+i(*lx±7*ly)   +^  (*2x±^*2y)   +■•■  =  0 at y = ±1 (33) 

Depending on the order of the singularity of the zeroorder solution, we can viTite 

1 / 1 
^Ix  ±7ry 

■^Oxi jV   =  "~(*2x±J*2yj (3.9) 

The boundary value problems defined by Equations (3.7) and (3.9) can be identified with the classical formulation of wall 
interference. The solutions are given in detail in Chapter 4 and for present use, the solution in series form is adopted. The inner 
expansion of the solution as r -> 0 can be written as [3.4] 

To 1 
<t>~- -—(.6 +aiy+ a2xy) + 

27r 

l/x 
—   - + b,x 

H   27r\j2 

1 
+ — 

H 2;r V   ,2    ^^^/    2ir 
(3.10) 

where r = (x^ + y^)    and 5 = tan ' y/x. y^ is the vortex strength related to the hft, di the doublet strength based on the cross-sectional 
area of the profile and ej related to the pitching moment of the airfoil. The coefficients aj, a2 and b2 are functions of the porosity 
parameter P. 7j is the circulation induced in the higher order term. 

3.2.3   Inner Limit 

Near the airfoil, the characteristic length scale is the chord of the model. Thus the variables are scaled accordingly 

X = Hx, Y = Hy (3.11) 

The governing equation. Equation (3.1) and the boundary condition on the airfoil, Equation (3.2) are then written in terms of the inner 
variables as 

'f'xx + <AYY  = 0 (3.12) 

IAY (X, ± 0) = ± Fx - a 

with X, Y fixed while H -»■ <». The potential can be expanded as 

■^ V^'^- k) =  *0 (X,Y) + j^ $, (X, Y) + ^ <I>2 (X,Y) + . . . 

Substituting into the governing equation, Equation (3.12) and the boundary condition Equation (3.13), we have 

*nxx  "^*nYY    =   °' n   =   0, 1, 2, . . . 

(3.13) 

(3.14) 

(3.15) 

I-OY (X,±0) = ±Fx-a (3.16) 

$lY (X,±0) = 0, n = 1,2, (3.17) 
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The zero order solution is that of a thin airfoil in free air and can be obtained for the thickness and the lifting cases 
respectively. The inner solution around the airfoil, however, cannot satisfy the boundary condition at the tunnel wall and has to be 
matched with the outer solutions. In preparing for the-matching process, the inner solution <J>Q is expanded as X, Y ->■ °o 

^0        ^1   X     '^l  Y 
e + + + , 

2TT 277 27r 
(3.18) 

where 
.% I-V, 1.'/ 

AudX, Di   = AYdX, El   = 
■'-'A ■'-'A ■'-' 

AuXdX 

and R = (X^ + Y^)'''^ 

Fg is the circulation, Dj the displacement and Ej the pitching moment of the airfoil. 

The higher order potential <^„, satisfying the homogeneous boundary condition Equation (3.17) on the airfoil surface, can be 
written in its asymptotic form as R -* °° [3.10] 

*„(X,Y) ~ C„XY + A„X + B„Y - — 0 + . . ., n = 1,2, (3.19) 

where r„ is the circulation which may be induced in the higher order solutions. 

3.2.4   Matching Procedure 

We have, so far, dealt with the two asymptotic limits of the problem separately. For the outer limit, the tunnel height is fixed 
and the airfoil shrinks to a singular point and for the inner limit, the airfoil chord is fixed and the tunnel height tends to infinity. In 
between these two solutions approach each other asymptotically. To match these two expansions we follow Van Dyke's principle that 
the inner expansion of the outer solution matches the outer expansion of the inner solution [3.3]. The inner expansion of the outer 
solution. Equation (3.10), is written here as: 

To 1 
— (0 + ai y + a2xy) + - 

27r 
- + b2X 

Vr^          L 

1 
+ — 

H 

■  Ti 

^21 2TT 
■a2y (3.20) 

The outer expansion of the inner solution written in the outer variables gives 

r, ^0 
— I 

27r 
^ + +    A, x + B, y 6]  +—    C,Hxy + Ajx + B^y ' 

2TrH ,2    27rH,2      \  ^ '^    27rH    /      H  \ ^     ^       ^ ^^    27rH 
(3.21) 

Comparing these two expressions, we have 

To   = To, d,   = D, e,   = El 

Toai 

2tT 

To 32 

2lT 

Ti 
dibj 

27r 
= A, 

eia2 

2it 
(3.22) 

The matching procedure relates systematically the flow fields around the airfoil and near the tunnel walls. The zero order 
inner solution is that of the thin airfoil in free air. The first order outer solution is the classical interference solution with the airfoil 
shrinking to a singular point, yielding an angle of attack change, Aa, having a value - 7Qai /27r. This in turn generates additional 
circulation Ji of the same order. The second order solution gives the blockage with the change of free stream velocity Au equal to 
di b2 /27r. In a similar manner, higher order solutions can be obtained. The outer solution forms the outer boundary condition for the 
inner problem. The inner solution, on the other hand, provides the singularities for the outer problem. The approximate solutions of 
the original boundary value problem can now be constructed from the asymptotic solutions. The accuracy of approximate solutions 
can be improved systematically by considering higher order terms. 

3.3   Transonic Flow 

3.3.1   Formulation 

At transonic speeds the governing equation of the flow is nonlinear. Following the procedure presented in the previous 
section the formulation is again developed within the framework of small disturbance theory. In transonic flows the small disturbance 

equation can be written as [3.11] 
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[K-(7+l)0^]0j,. +0        =0 (3.23) 
X XX y y 

1- M^ 
where K 

M2m ^2/3 

y   =  t'/3 ]V[™y 

K is the transonic simUarity parameter, M the free stream Mach number and t the maximum thickness of the airfoil. The velocity 
potential 0 and the co-ordinates x, y have been scaled by the transonic similarity rule. The boundary condition on the airfoil is 

>~ (x , ± 0) = M 
y 

r       a 
f<2<| (3.24) 

virhere f is the thickness distribution of the airfoil. The tunnel walls are considered to be perforated. The boundary conditions at the 
walls are therefore 

1 ~ 
"^x *?*?   ^ ^ at y  = ±H (3.25) 

where H   = t^'^M^H, P  = t'^/^M"™? 

are the scaled tunnel half height and porosity factors respectively. In transonic flow shock waves may occur in the flow field and the 
shock condition is specified as 

Wl  = 0 • (3.26) 

where the symbol [ 1 denotes the difference in the quantities involved across the shock and x° is the shape of the shock wave. 

3.3.2   Outer Limit 

Away from the airfoil, the length variables are scaled by H as 

5 y 
^ = -. y = r (3.27) 

H H 

With X, y fixed as H -»■ <», the airfoil again shrinks to a point singularity. The potential 0 is expanded in 1/H as 

* (^'y^H)  = 'Ao(x,y) + -0i(x,y)+-^(/.2(x,y) + ... (3.28) 

where the tilde symbol has been dropped for convenience. For nonlinear compressible flow logarithmic terms exist in the far field 
solution [3.12] and are included in the expansion for matching with the inner solution. The equations for each order are respectively: 

■ " K*2xx+^2,y   =0 

(3.29) 

with the boundary conditions depending on the order of the singularity of the zero order solution, 
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1^ 
Ox    *   p   *0y 

1 1 
— (0,       ±—0,     ) 

1 log H 1 
'''Ox * n '^Ov    =   - "5" ('^2x   ± -5- '*2v) p '"y ^x       p ^^y' 

(3.30) 

The inner boundary condition is now lost and is replaced by matching with the inner solutions. The equations for 0o and 02 can be put 
into the Laplacian form with a transformation in the x-co-ordinate 

The boundary value problems of these two terms are therefore similar to those discussed in Chapter 4. The 0i equation has a non- 
homogeneous term containing the zero order solution 0Q . Its solution provides the nonlinear compressibility contribution to the 
problem. The inner expansion of the outer solution can be wrritten as [3.4] 

(3.31) 

To 1 
— (9 + aiy+ a2xy)+- ^' Y-+-X VK 

1 
+ — 

H 

where 

27r\/K \r2     ^ 

7+1  /To V log r        „       r+1    /To\%os30     Ti 
     — I    cos 6 I — I d 
tTT^KVa/      r 16,r2KV2/        r 2ir   ^ 

\/Ky 

27r   \   ^2     K'^ 

logH 

^    27rVK r2 

(3.32) 

r = (x^ + Ky^)'/'   and e = tan"' 

The first two terms are the solution of the homogeneous equations and are therefore similar to those given in Equation (3.10) 
for subsonic flows. The other terms come from the nonhomogeneous equation representing the nonlinear compressibility of the outer 
flow. 

3.3.3   Inner Limit 

The inner variables are scaled as 

X = Hx, Y = Hy (3.33) 

The inner expansion of the disturbance potential up to the second order has the form 

X,Y;ij   =  *o(X,Y) + ^*i(X,Y) + -^*2(X,Y) + ... 

The corresponding equations are therefore 

[K-(7+l)*ox] '^OXX-'^OYY  = ''' ■    ' 

[K - (7+1) *ox] *ixx - (T+1) *Oxx *ix + *OYY  = ^ 

[K - (7 + 1) -J-Oxl  *2xx - (T+1) *0XX *2x + *2YY   =   ^T+D *lx  *lxx 

and the boundary conditions on the airfoil are 

*0y     (X,   ±   0)      =      FX   -     p 

. -l<x<i 
2 2 

#„Y (X, + 0) = 0,       n = 1, 2, 3 . . . 

(3.34) 

(3.35) 

(3.36) 
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The zero order problem consists of the nonlinear smaU disturbance equation and the corresponding boundary condition on the airfoil 
The solution is the free air solution of a thin airfoil in transonic flow. The first order equation is linear with coefficients containing the 
zero order solution. The inner boundary condition is homogeneous and the outer boundary condition is provided by matching with the 
outer solution. 

The outer expansion of the inner solution up to the second order can be written as [3.4], [3.3] 

i2 

where 

_^e.lil(^)^cose.i 
2ir        4K  \2IT/       R H 

16K \2ir/ 

D 

27rVK 

1 Ej 
cos 6 + sin ( 

cos 35 
1 

+ — 
H 

A,X + B,Y e + , 
27r 

1 

H2 
CjXY + AjX + BjY e + . 

27r 

■\/KY 
R = (X2 + KY^f'   and 9  = tan"'  

(3.37) 

Again, TQ is the circulation of the airfoil, Dj and E; are the doublet strength with axes along the X- and Y- direction respectively The 
nonlmearity of the transonic equation appears as in the logarithmic and the high degree cosine terms. The first order solutions include 
the induced flow components Aj and Bj and the additional circulation Ti. 

3.3.4   Matching 

The inner expansion of the outer solution. Equation (3.32), is written in terms of x*, y [see Equation (3.31)] 

d, To 1 
— (9+aiy + a2xy)+  
2'^ VKH 2iry/K /K \r*2 

+ b2 X* 
VKH i{'j-2'''') 

logH  "2    X* 

H    2ffK^ 

7+1 /ToX   logVKr* cos 36     Tl 7+1 /Toy 
4,r2K\2/ 

where 

_47r2K \ 2 /     ,/Kr*    ^Kr*      ^jr 

r* = r/VK 

The outer expansion of the inner solution. Equation (3.36), written in the outer variables x*, y has the form 

e + 
7+l/roy Iog^/KHr^ 

27r 4K \27r/ VKHI 
cos 0 +  

r* V^H 

-"1      X* '^'l        V* 

2-ns/K. '^*      27rVK r*^ 

7+1/ToX    cos 

16K\27r/       r^ 

30 

(3.38) 

1 
+ — 

H 
AiVKHx* + BiHy 0 

27r 

Comparing these two expressions, we have 

H2 
C2VKH2x*y + AJVKHX* + BjHy d 

2ir 
(3.39) 

To  = To, d,   = D, E,, 

Toai 

27r 

0 = Ai, 

r 2 
7+1  M 

27r 4X/K 

70^2 

2TV/K 

d, b 1^2 

27rK3/2 
= A, 

6132 

27rKl/2 
(3.40) 

Aside from the nonlmear contributions the matching conditions are simUar to those of the subsonic flow discussed in 
bection 3 2.4. The matching condition shows that the wall constraint induces an angle of attack change in the outer region This 
additional angle of attack, up to the first order, is the same as that obtained by the linear interference theory. This wiU in turn generate 
additional lift with circulation Tj of the same order. The displacement effect due to the wall constraint is of the order 1/H The match- 
mg condition shows contnbutions from both the linear solution, as in the subsonic flow, and from the transonic nonlinear solution The 
nonlmear solutions are shown to be proportional to the square of the circulation 7o and do not vanish as the airfoil thickness tends'to 
zero, as long as lift persists. Analysis up to the second order for the solid wall condition can be found in Reference [3.6]. 

.u   «,      Jl"! asymptotic analysis has brought out the essential features of the waU interference at transonic speeds without calculating 
the flow field completely inside the tunnel. It shows that up to the first order, the angle of attack correction is identical to that for the 
Imear subsonic flow. For blockage correction, aside from the displacement of the doublet based on the cross-sectional area of the airfoil 
as m the Imear subsonic flow, a doublet due to lift is induced resulting from the nonlinear compressibUity of the flow The latter has 

, « ?..^u"^^   ^'*^ *^ logarithmic term to form an approximate expression for the effective doublet [3.5]. For moderate and high 
Mt the block^e due to the nonlinear effect can be quite appreciable in comparison with that due to the geometry of the model In 

n fn!!'l     J     1     r *''« ^°' * NACA0012 airfoil model in a tunnel with H equal to 3, at Mach number of 0.8 and lift coefficient 
0.55, the blockage from the effective doublet is 20% of that due to the geometry of the airfoU. 
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The results shown by the asymptotic analysis have also been obtained by solving the transonic interference problem 
numerically [3.14]. In the numerical solution the wall interference is taken as a perturbation to the free air flow and both the free air 
and the perturbation equations are solved numerically. The results show that the angle of attack correction is practically the same as 
that obtained by linear subsonic theory and the Mach number correction due to blockage takes a higher value than that of the linear 
theory. The numerical method, however, is not capable to provide the physical interpretation as clearly as the asymptotic analysis. Inter- 
ference flow field around the airfoil can also be calculated by the asymptotic method by solving the perturbation equations of the 
inner limit. These equations are linear with coefficients containing the zero order solutions and can be solved numerically. Detailed 
calculation of the interference flow field around the airfoil up to the first order is given in Reference [3.6] for solid wall tunnel. 
Excellent agreement with numerical solutions of the nonlinear equations is obtained for a value of H as low as unity, at the extreme 
limit of the asymptotic theory. 
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4.0 CLASSICAL POROUS-SLOTTED WALL THEORY 

4.1 General Properties 

The theory is based on an infinite test section between two parallel walls, on which the porous-slotted boundary 
condition (2.65) is satisfied, and the concept of wall interference by Prandtl [4.1]. The latter can be characterized in the following 
way. 

It is assumed that in the vicinity of the walls there is small disturbance flow that may be described by the linearized, subsonic 
potential flow equation 

|5^-7 + -7 = 0 (4.1) 

where 

i3 = Vl- Ml (4.2) 

is the Prandtl-Glauert factor and M„ is the Mach number far upstream. Experience shows that the linearization is possible up to very 
high values of M^ < 1 since the flow is essentially parallel to the tunnel wall. 

In the linearized flow region between the contour C, encircling the airfoil, and the wind tunnel waUs, see Figure 4.1, the 
disturbance velocity potential (p is decomposed as 

<P = <t>F -*■ <h/ (4.3) 

Here 0p denotes the potential due to the airfoil in free air, satisfying Equation (4.1) in the exterior of C and obeying the far field 
condition 

—,-- >0 as r = Vx^ + (/3y)2 ^- oo (4.4) 

Since the knowledge of 0p is required only near the walls, the actual airfoil boundary condition does not directly enter the problem 
and it is sufficient to represent 0p by singularities placed at the airfoil position (origin of the co-ordinate system). 

The potential 0^, representing the induced effect of the wind tunnel walls, is called the wall interference potential. It is 
assumed to be nonsingular inside the test section, i.e. satisfying 

a^-^w  3^*w h 

9x2       3y2 2 

where h is the test section height. In other words, the interference flow is assumed to be a perturbation to the mainstream. Accordingly, 
the derivatives of 0w with respect to x and y, calculated at the airfoil position, are interpreted as corrections to the x and y components 
of the (unit) tunnel stream velocity. The higher derivatives of (/>,// describe a nonuniform distortion of the wind tunnel flow that does 
not exist in free air but, depending on its magnitude and accuracy requirements, the wind tunnel measurement may still qualify as 
"correctable"; for more discussion see Reference [4.2]. 

In our specific case, 0 satisfies the porous-slotted wall boundary condition (2.65). Using Equation (4.3) we have for an airfoU 
located midway between the tunnel walls 

_3 

3^ 

_3 

3x 

(0F +'iHv)  +K— ^0p -i-(^j    + - — ^0p + (Awj   = 0, -~<x<«>,        y = 7 (4.6) 

(0F + *wj - K — (^0p + 0w)    - J ^ (*F + *w)   = 0, - oo < X < oo,        y = " X (4.7) 

where K is the slot parameter and P is the porosity parameter. 

Equations (4.5), (4.6) and (4.7) describe the boundary value problem for the wall interference potential 0w. The free air 
potential (p^, which is assumed known for a given airfoil geometry and aerodynamic force measurements, provides Equations (4.6) and 
(4.7) with the necessary nonhomogeneous term, so that the solution is in general nontrivial. 

^ Without going into the details of existence and uniqueness, we may note the following properties of the above problem. If 
^\f/ is its solution, then is also 

*w   =  0w + C (4.8) 

Additional solutions are 
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0w  = ?w + Ax + C if P = 0      ■   ■   ■ (4.9) 

and 

1 ". 
(j>^   = (py/ + By + C if p"° (4.10) 

where A, B and C denote arbitrary constants. As we shall see later, the above properties allow us to satisfy the far upstream condition 

(t) ->■ 0 as X -- - °o (4.11) 

but not necessarily the far downstream condition 

(p ^ 0 as X ^ °= (4.12) 

In any case, Equations (4.3), (4.4) and (4.11) imply that it is possible to achieve 

^—, ^ 0 as X ^ - ~ (4.13) 
ox      dy 

i.e. zero tunnel disturbance far upstream, which is convenient from the point of view of interpreting i^ as the wall interference 
potential. 

The most important property follows from linearity of Equations (4.5), (4.6) and (4.7). For a thin airfoil in subsonic flow, 
we can expand 0p in the multipole expansion [4.3], [4.4] 

(t>p  = ^p" + <^p'>' + 0p'* + 0p" + . . . _ (4.14) 

where the right hand terms denote potentials due to a 

source of strength a 

vortex of strength y 

doublet in the x direction of strength /J 

doublet in the y direction of strength co 

(h"   =   ^ log Vx2 + (^y)2 (4.15) 

7 fiy 
7  = - _L atan -'^ (4.16) 

2;r X . 

u X 
'PF'  = ITT  (4.17) 

2^^ x2 + (|3y)2 

cj By 
0F" = ;;  (4.18) 

27r x2+((3y)2 

The streamline patterns characterizing the above singularities are schematically shown in Figure 4.2. Since the (complex) velocities 
derived from potentials (4.15) to (4.18) are terms of a Laurent expansion, the singularity strengths can be easily obtained by contour 
integration. For a thin airfoil of a small incidence and camber we obtain [4.4] 

°'=2CCDW (4.19) 

7 = -CCL (4.20) 

M = c^A (4.21) 

cj = -C^CM (4.22) 

where c is the airfoil chord, Cp^ the wake drag coefficient, CL the lift coefficient, A the cross-sectional area of the airfoil nondimen- 
sionalized by c^, and Cy^ is the 
placed at the mid-chord point 
sionalized by c^, and Cy^ is the pitching moment coefficient about the origin of the co-ordinate system. In particular, if the origin is 
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'^ = |'=2^^CL+CM,/,) (4.23) 

- + -^=—-—   -i^ (4.24) 
5,2   a 2       2   ax \ax/ 

where C[yi ,   is the quarter-chord pitching moment coefficient. 

For transonic inviscid flow governed by the small disturbance equation 

^ a 

ax'^   ay 

the far field of a thin airfoil is dominated by the vortex and doublet terms 

0p   = ^F'' + -AF" (4.25) 

as established from Green's identities by Klunker [4.5]. The vortex strength, determined by circulation around the airfoil, is again given 
by Equation (4.20). However, the doublet strength contains, besides the airfoil cross-sectional area, also flow field contributions due to 
the nonlinear term on the right hand side of Equation (4.24). Very far from the airfoil, however, the nonlinear term becomes negligible, 
so that the far field is again governed by the linearized Equation (4.1). 

Using singular perturbation analysis of the problem, Chan [4.6], [4.7] derived an approximate formula for the transonic 
doublet strength 

IX = c^ {A + SA) (4.26) 

where the nonlinear contribution to the airfoil area is 

" = i:/-*(7)lr'4"^i)'"]) 
Here K. (=1.4) is the ratio of specific heats and t is the (maximum) airfoil thickness. The latter enters the picture through the transonic 
similarity parameter 

1-M^2 . 

k =  (4.28) 

■(i)' 
It may be observed that 6A grows above all limits with increasing the distance |y | from the airfoil. However, this is of little 

concern, since 

log lyl     . , , 
  ^0 as lyl "*• °° 

■        y^ 

so that the doublet potential vanishes at large distances from the airfoil as for subsonic flow. In practice, |y | is limited by the test 
section semi-height. 

The value 6A, Equation (4.27), represents the first order term of an asymptotic expansion (A is its zero order term). The 
expansion is meaningful only if the perturbation parameter 

H = „j(iyM 

is greater than one [4.7]. For a given airfoil and Mach number this is the case only if the airfoil chord to tunnel height ratio, c/h, is 
sufficiently smaU. Table 4.1, adopted from Reference [4.7], compares 6A with A for typical tunnel conditions. It is observed that 6A, 
since it is proportional to CL^, becomes important only for higher values of lift. The transonic contribution to the source strength, 
depending on the effective thickness of the airfoil at the trailing edge, has been treated by Smithmeyer and Murman [4.8]. 

Having specified the far field potential 0p, the wall interference problem, Equations (4.5), (4.6) and (4.7), is then solved 
separately for the singularities (4.15) to (4.18) and the solutions are denoted 0^", 0^^^ , 0^" and 0^". In accordance with the aero- 
dynamic parameters determining the singularity strengths (4.19) to (4.22), the wall effects associated with the above potentials are 
called the wake blockage, lift interference, solid blockage and pitching moment interference, respectively. 

By the principle of linear superposition, the wall interference potential corresponding to the free air potential (4.14) is 

0w = 'Aw" + '^w'^ + V + *w" + • • • (4.30) 
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Since 
In the construction of the wall interference potential (4.30), another important property of the solution can be utilized [4.4]. 

o   ox 
(4.31) 

CO   3 

7   ox 

and Equations (4.5), (4.6) and (4.7) permit differentiation with respect to x, it is clear that 

M    3   .  „ 

(4.32) 

^w" o  3x 
(4.33) 

*w" 
CO   9 

7  9x 
(4.34) 

so that the wall interference problem needs to be actually solved only for the source and vortex. For solid tunnel walls this property 
was first utilized by Goldstein [4.3]. 

It would seem logical to start with analyzing the wake blockage, because the source is a fundamental singularity of the 
Laplace equation, from which all other singularities of Equation (4.14) are derived. However, since the source solution poses some 
additional difficulties compared to that of a vortex, we wiU deal with lift interference first. 

4.2   Lift Interference 

In free air the potential due to a point vortex at the origin is 

7           (3y            , 
'h'^ (x,y) = atan — = atan 

27r 27r X 
(4.35) 

where 

X = 
|3h 

Y = ^ (4.36) 

are nondimensional co-ordinates that reduce Equation (4.5) to Laplace's equation. Applying the Fourier transform technique of 
Baldwin, Turner and Knechtel [4.9] and Wright [4.10] to the boundary value problem specified by Equations (4.5), (4.6), (4.7) and 
(4.35), we obtain 

0w'' (x,y)  = --Z-lh (X,Y) + Jj (X,Y)] 

By the tilde above the symbol we indicate that this is a particular solution, which does not necessarily satisfy the far field condition 
(4.11). The right-hand side functions are 

oo 

/ 
P ds 

J, (X,Y) =    I      sinh (2Ys) cos (2Xs) — 
'     SDCS) S 

0 

(4.37) 

OO 

/ 
gN(s) ds 

J, (X,Y) =    I     sinh (2Ys) sin (2Xs) 
gD(s) 

0 

(4.38) 

where 

'[ 
12 

80(5) =    sinh(s) + Fs cosh(s) cosh(s) (4.39) 

gN(s) =    (1 - Fs)   sinh(s) + Fs cosh(s)   - (|-j cosh(s) ( e (4.40) 
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and 

IT    . <^-4i) 

is the nondimensionalized slot parameter. 

We are not giving the details of the derivation here, since they may be found in Reference [4.10]. However a word of 
caution is in order: as noticed by CatheraU [4.11], in the derivation of Ji one comes across the factor 

|(1 - Fs) cosh(s) + sinh(s) + Fs cosh(s) I e"' 

which has a simflar structure as g^ except that its value is one. In the original derivation in Reference [4.10] it is not reduced to unity, 
presumably due to misprinting the last cosh as cos. The reduction is done properly in Reference [4.12], but not in [4.13], where the ' 
misprint is reproduced. 

For porous walls, F = 0, the expressions (4.37) and (4.38) simplify to 

oo 

T   /■,, „, C sin (TIT) ds 
Jl (X,Y) =    /      ' sinh (Ys) cos (Xs) - (4 42) 

J    cosh(s) + cos (7rr) s \'*--*'^) 
0 

00 

T   /Tr ,r^ f      ^'^ '^ COS (TIT) ds 
Jj (X,Y) = -   /      W sinh (Ys) sin (Xs) - (4.43) 

J    cosh(s) + cos (TTT) S y^-"*") 
0 

where 2s is replaced by s and 

2 P 
T = — atan — 

IT /J (4.44) 

For a transversaUy slotted wall it foUows from Equation (2.33) that T is equal to the open area ratio, namely 

a 

where a is the slot width and C is the slot spacing. 

The earher used factor [4.13] 

*3 =  J (4.45) 
1+- 

P 

also varies on the interval <0,1>, but otherwise lacks physical significance, since it does not follow naturally from the porous waU 
theory. For comparison, r and Q are plotted against P/^ in Figure 4.3. 

In order to make sure that the upstream condition (4.11) is satisfied, we evaluate the upstream limits of J,  and J, 
Equations (4.37) and (4.38). Since 1 <"      2, 

£ sinh (2Ys) 

P s 

is a continuous, finite function on the interval 0 < s < «, we obtain according to the Riemann-Lebesgue theorem [4.16] 

lim      Ji (X,Y) = 0 
x-±-= 

The limiting values of Jj are obtained from the Dirichlet integral [4.16] 

1- f   r,, s sin(Xs) , n 
Imi        I    G(s)  ds = ±-G(0+) 

0 

where G (s) is a function continuous on the interval 0 < s < 00. in our case X = 2X and 
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G(0+) = lim 
gN(s) 

gD(s) 
sinh (2Ys) 

0 
'    P —   . 

2Y 1 

1 + F '    P 

=it 0 

Accordingly 

lim       J2 (X,Y) 

0 

■n 

1 + F 

P 

=  0 

In order to make the interference potential vanish far upstream, we thus take 

*w^ (x,y) = - ;r- J (X,Y) 

where 

J (X,Y) = Ji (X,Y) + J2 (X,Y) + -^ Y X m 

and X is a (discontinuous) function defined as 

(^ 

1 
- = 0 
P 

i- 0 

(4.46) 

(4.47) 

(4.48) 

Such a modification of the wall interference potential is clearly permissible, cf. Equation (4.10). 

The integrals iy and J2 can be converted into infinite series using the method of residues. This approach was first used by 
Murman [4.17], who was interested in asymptotic expansions of wall interference potentials for large | x |.  The  procedure  involves 
heavy algebraic manipulations, but is in a great detail documented by Catherall [4.11], so that again only the result is presented here: 

'I'yf (x,y) = - 0F^ (x,y) + f ^ 
sin(2Y7j)e      ^> 

X < 0 
^P   7j [l + Fcos^(7j)] 

0w'^ (x,y) = - 0F'' (x,y) ■ 
sin(2Y7j)e 

-2XTi 

^„ y-. ri + >0 Tj [1 + F cos^ (7j)] 

2Y       /l 

"^ 1 + F '' VP 
X> 0 

(4.49) 

(4.50) 

where ^p''' is the free air singularity, given by Equation (4.35), and 7j is the root of the transcendental equation 

tan(7j) = - - F7j 

on the interval 

We may note that 

(J-|)'^<TJ<(J + |)T 

gD (i7j) = 0      ,      i = spi. 

and thus the values i7j are the poles of the integrands of Jj and J2. In the special case of porous walls we obtain 

7i   =  - — 7 + 1 
'^ 2 

(4.51) 

(4.52) 

where T is given by Equation (4.44). The fact that the poles are equidistant results in a great simplicity of the obtained corrections for 
porous walls, as we shall see in Section 4.6. 
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Going back to Equations (4.49) and (4.50) we may note that their difference is caused by the selection of different 
integration contours [4.11] for X < 0 and X > 0, imposed by the condition 

-2X'v 
e     ^J ^ 0 as |X| ^ ~ 

If desired, the expression in the curly brackets of Equation (4.50) can be contracted to 

sin(2Y7j)e ^^'^> 

^   7j [1 + F cos^ (Yj)] 

since 7j = To  = 0 is possible only if 1/P = 0, in which case 

sin (2Y7o) e~^^''° 2Y 
lim 
TO-O   To [l + Fcos^ (7o)] 1 + F 

The infinite series formulas (4.49) and (4.50) are particularly suitable for large values of | X |, since then only a few terms are 
needed for achieving required accuracy. However, near X = 0, the integral representation (4.46) is more appropriate, particularly if the 
parameters P and F are close to zero. As experienced in Reference [4.11], in that case the series suffer from poor convergence. 

4.3   Wake Blockage 

In terms of the reduced co-ordinates. Equations (4.36), the potential due to a point source at the origin of the co-ordinate 
system can be vvritten as 

^F" (X,y) = T^ log Vx2 + Y2 (4.53) 

Admittedly, the right hand sides of Equations (4.15) and (4.53) differ by a constant term, but both expressions have the same 
derivatives. 

Observing that (^p" is indeterminate as |X | ->• oo^ it is natural to expect also a few extra complications with the corresponding 
wall interference potential (p^". The Fourier solution of the problem described by Equations (4.5), (4.6), (4.7) and (4 53) is [4 101 
[4.11]: 

^w" (x,y) = ^ [Ii (X,Y) + Ij (X,Y)] 

where 

II (X,Y) 

oo       _ _ 

f — J      fD(s) 
cosh (2Ys) sin (2Xs) 

ds 

h (X,Y) 
r fN(s) 

j   M^ 
ds 

cosh (2Ys) cos (2Xs) — 
(s) s 

The denominator and numerator functions are 

fD(s)   = cosh(s) + Fs sinh(s) - sinh(s) (4.54) 

fN(s) =   j (1 - Fs) [cosh(s) + Fs sinh(s)] - ( ^ 1   sinh(s) \ e'^ 

It was again found by Catherall [4.11] that in the original derivation of Ij in Reference [4.10] the term 

(4.55) 

(1 - Fs) sinh(s) + cosh(s) + Fs sinh(s) | e"^ 

was not reduced to unity, since the factor (1 - Fs) was dropped by mistake. The error, affecting the wake blockage formulas for slotted 
walls, is repeated in References [4.12] and [4.13], but not in [4.14]. 
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To analyze the upstream behaviour of i^", we will first examine the far field values of Ij and I2. Since 

P 

lim 
P 
  cosh (2Ys) =     ■ 

P = 0 

we obtain from the Dlrichlet integral formula 

lim       Ii (X,Y)  = 
x-±~ I -^£ 

2 P 

P = 0 

? ¥= 0 

In contrast to it, problems arise with I2. It can be shown that for small values of s 

^N(S)  cosh (2Ys)   __   1^ 

tois) s s 

and thus the integral does not have a finite value. However, it is possible to calculate the far field values of its derivative 

ai2 " 

3X 
(X,Y) 

/ 
0 

^N (S) ds 
2s  cosh (2Ys) sin (2Xs) — 

fc (s) s 

We have 

lim 
s->0 

fN(s)    ■ 
2s  cosh (2Ys) 

fD(s) 

and thus, making use of Dirichlet's integral formula 

31, 
lim       — (X,Y) = 
x^±«,   dX 

P = 0 

? ^ 0 

P = 0 

¥ ^ 0 

This result is consistent with the physical fact that the flux from a source cannot escape the test section if its walls are solid, 
so that the induced velocity disturbance is felt over the whole test section length. In order to obtain undisturbed velocity far upstream, 
it is enough to add the term irX to Ij if P = 0, in accordance with Equation (4.9). Physically, the uniform velocity increment in the 
positive direction is equivalent to placing a sink (source of strength - o) infinitely far downstream [4.15]. However, this alone does not 
make I2 finite and if we are interested in the values of the interference potential 0\^,'', the expression for I2 has to be modified. Using 
Catherall's approach [4.11], we set 

00   _ ji_ 

Il(X 
'^^--/^ 

P ds 
—  [cosh (2Ys) sin (2Xs) - sin (2s)] — 
(s) s 

(4.56) 

.    ^NCS) ds 
I2 (X,Y) =    I    -^-;-^   [cosh (2Ys) cos (2Xs) - cos (2s)]   — 

r fN(s) 

~   J    i^) 
0 

(4.57) 

Such a modification is clearly permissible, since the extra terms in the integrand add only a constant to 0^", cf. Equation (4.8). With 
the help of the additional cosine term, the second integrand becomes zero at s = 0; the sine term is added to the first integrand for 
symmetry purposes. 

For porous walls, F = 0, the expressions (4.56) and (4.57) reduce to 

- sin (TTT) 
II (X,Y) 

/ 
0 

cosh (s) - cos (TTT) 
[cosh (YS) sin (Xs) - sin (s)]   — (4.58) 

l2(X,Y) 

00 

/ 
e    - cos (TTT) ds 
  [cosh (Ys) cos (Xs) - cos (s)]   — 
cosh (s) - cos (TTT) S 

(4.59) 

where T is given by Equation (4.44). 
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Expanding Ij and Ij, Equations (4.56) and (4.57), in infinite series, it is possible to show that 0^°, satisfying the upstream 
condition (4.11), is 

27r(3 

where 

'w" (x,y) = r^ I (X,Y) (4.60) 

and 

I (X,Y) -- Ii (X,Y) + I2 (X,Y) + TT (X + 1) X (P) - ir j [X (P) - 1] - irC (4.61) 

fl        ,       P = 0 
X(P) =     i (4.62) 

10       ,       P > 0 

in accordance with Equation (4.48). The constant C, as will be verified below, has the value 

= E 
^0 ''j[l + Fsi"'(''j)] 

The infinite series expansions of (j)^" are [4.11] 

cos(2Yaj)e ^^"^ 

(4.63) 

0w''(x,y) = -*F''(x,y)+—    >       , X<0 (4.64) 
Fsin2(aj)] 

a    Iv^    cos(2Yaj)e ^''"j » I 
(^^w" (x,y) = -'^F" (x,y) - — { >      ^ 2Xx(P) + 7[x(P)-l]>, X>0 (4.65) 

where ^p" is given by Equation (4.53) and Oj is the solution of the transcendental equation 

cot(aj) = FOj-- (4.66) 

on the interval • 

(j - 1) TT < Oj  < jn- 

We may again note that 

fn (iOj) = 0, i = v^ 

and thus iOj are poles of the integrands of Ij and I2. For the porous wall wind tunnel the poles are again equidistant: 

Oj  = - -r + Tj (4.67) 

where T is given by Equation (4.44). 

From Equations (4.53) and (4.64) it is seen that the upstream condition (4.11) is satisfied for 0" = ^p" ■"■ 'h/" t>ut not for 
0^°. As suggested in Reference [4.11], the inconvenient constant term - TTC in Equation (4.61) can be dropped, but then of course 
the upstream condition (4.11) is weakened to 

a 
(j> -^ —- C as X ->■ - °° 

2^ 

and the infinite series expressions (4.64) and (4.65) have to be modified accordingly. 

4.4   Solid Blockage 

Using Equations (4.33) and (4.60), the wall interference potential induced by the doublet in the x direction is 
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u     31 
■ 0\/ (x,y) =   — (X,Y) (4.68) 

where 

-(X,Y)=-(X,Y).-(X,Y).^(P) (4.69) 

This result agrees with the actual solution of the boundary value problem of Equations (4.5), (4.6), (4.7) and (4.17), as may be verified 
in References [4.9] and [4.11]. 

Similarly, applying Equation (4.33) to infinite series (4.64) and (4.65), we obtain 

cos(2Yaj)e        ' 

fl2h   ^^       1 -I- F ■,;r,2 / 
<h'' (x,y) = - ^F" (x,y) > , X < 0 (4.70) 

3^h   ^     1 ■  -      ' —      1 + Fsin^(ap 

)i    \-~\  COS(2YCTJ) e        ' 
■ii'w'* (x,y) = - (SF" (x,y) + -^    >      , X > 0 

|3^h f—i     1 + Fsin2(a:) 
(4.71) 

The value CTJ = CTQ = 0 comes into question only when P = 0, in which case 

cos (2Yao) e        " 

1 + F sin^ (CTQ) 
= 1 

Again, the results agree with the evaluation of Equation (4.68) by the residue theorem, cf. Reference [4.11]. 

4.5   Pitching Moment Interference 

From Equations (4.34) and (4.46), the wall interference potential induced by the doublet in the y direction is 

where 

-(X,Y)=-(X,Y).-(X,Y) , (4.73) 

Applying Equation (4.34) to infinite series (4.49) and (4.50), we obtain 

sin(2Y7j)e ™~'' 
0w" (x,y) = - I^F" (x,y) - TT   > ,  ,      X < 0 (4.74) 

^h  ^^    l + Fcos^(7j) 

„   ,^   sin(2Y7pe~    "' 
i^" (x,y) = - 0p" (x,y) + —   > ,       X > 0 (4.75) 

^ ^Q    l + FcosM7j) 

where 0p" is given by Equation (4.18). 

The effect of the pitching moment is of lesser importance than that of a lift and has generally been given little attention in 
the literature, so that it is not too surprising that Equations (4.72) to (4.75) appear to be a new result. With the help of the doublet in 
the y direction it is possible to place the vortex, representing the lift effect, at the origin of the co-ordinate system and not necessarily 
at the centre of pressure. This is of particular value for conditions near zero lift. 

4.6   Wall Interference Corrections 

In most practical cases we will be interested in the following quantities: 

velocity (blockage) correction 

"w (x,y)  = -^ (x,y) (4.76) 
ox 



incidence correction 

velocity gradient correction 
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vw(x,y) = T—(x,y) (4.77) 

3u^ 3^0w 
-—{x,y) =  (x,y) (4.78) 
^^ 3x2 

streamline curvature correction 

3vw 3^0^ 

3x 3x3y 

evaluated at the position of the airfoil, x = y = 0. For application of these corrections to measured stream and model quantities, see 
Section 4.8. 

Substituting from Equations (4.30), (4.46), (4.60), (4.68) and (4.72), we obtain 

a     31 II      dH 
uw(0,0) ^(0.0) + —^^ (0.0) (4.80) 

2iT^^h °^ 2TTP^h^ 3X2 

^w(0.0) = -^ 1^(0,0)--^ ^(0,0) (4.81) 

3"w a     3^1 fi      bH 
--(0,0) (0,0)+—^= (0,0) (4.82) 
9^ 27r|33h2 3X2 27rP'*h3 3x3 

3^W y 32j CO 33j 
-— (0,0) = - —4 r—-(0,0) —  (0,0) (4.83) 
^^ 27r^2 3X3Y air/S^h^ ax^SY 

where from Equations (4.56) - (4.57) and (4.37) - (4.38) 

91 — (0,0) = -2    I    j-;-;ds + 7rx(P) (4.84) 
J    Us) 

bh r fN(s) 
(0,0) = - 4    /    —— s ds (4.85) 

3X2 J    fD(s) 
0 

oo      S— 

 (0,0) = 8    /    T-—s2ds • (4.86) 
3X3 J    Us) 

and 

3J 

3Y 

?  gN(s) 

J fe(^' 

32j     •■       r gN(s) 
55^(0-0) = 4    /    —-sds (4.88) 
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33j 
■ (0,0) 

oo       JL. 

J      gD(s) 
s'' ds (4.89) 

Using Equations (4.39), (4.40), (4.54) and (4.55), the above derivatives of I and J are easily obtained by numerical 
integration. For a fast orientation they are plotted in Figures 4.4 to 4.9 as functions of r, Equation (4.44), and 

,//  = 
1 + F 2K 

1 + — 
h 

(4.90) 

Concerning Figure 4.4 it should be noted that 9I/3X, representing the wake blockage effect, is discontinuous at zero porosity. 
Introducing an arbitrarily small e > 0, we have 

31 
lim   — (0,0) = - TT 

but 

31 

33E<°'«' r=0 

which illustrates one of the most serious deficiencies of the infinite test section theory. This result may first appear somewhat para- 
doxical, but its explanation is quite simple [4.18]. For the hypothetical, infinitely long test section the discharge from a source, 
representing the displacement effect of the wake, is transmitted into the surrounding space (plenum) no matter how small the porosity 
of the walls. If P = 0, the situation changes suddenly since then the wall becomes completely impermeable and all of the discharge is 
forced to stay inside the test section. In contrast, the actual finite-length test section allows only a portion of the source discharge to 
escape, and this amount decreases continuously as the porosity of the walls is gradually reduced to zero. Accordingly, for finite-length 
test sections the wake blockage correction is continuous at zero porosity, cf. Section 4.10. From this we may conclude that the infinite 
test section theory is an unsuitable mathematical model for low porosity test sections. 

For porous walls, F = 0, we obtain from Equations (4.58)- (4.59) and (4.42)- (4.43) the closed form solutions [4.4] 

3X" 
(0,0) =< 

(27rr      m 
[    n    H2) 

n= 1    ,   T = 0 

n=l    ,   0<r<l 

n>l   ,   0<r<l 

(4.91) 

and 

3"J 

3X"-l3Y 
(0,0) = ^—^B 

(27r)"      /l-^T 
(^)   ,     n>l   ,   0<r<l (4.92) 

The symbol B„ denotes the Bernoulli polynomials 

Bi(T) = T- 

B3(T) = T^ - -T^ +-T 
3    ,     1 
— T^ + — 
2 2 

(4.93) 

B4(T) = T'' - 2T3 +T2 - ^ 
30 

5 5 1 
B,(T) = T^ - -T'' -f-T^ - -T 

^ 2 3 6 

etc., see Reference [4.19]. Substituting in Equations (4.80) to (4.83) we thus obtain for porous walls the correction formulas 
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uw (0,0) 
(3^ 

y       /! + T\      cow       /I +T\ 
vw(0,0) = --Bi(—)---B,(—) (4.95) 

8uw 

ax 
^w air       /T\      4    uif'      /r\ 
— (0,0) =  B,!-) + --^—- B,!-) (4.96) 

|3V       ^2/       3 |34h 

--(0,0) = -\R2 {-^-) - T-—^3 {-^-) (4.97) 9x ^2       V   2    /       3  ^2^3        V    2   / 

where T is given by Equation (4.44) and X by Equation (4.62). 

The first one to use systematically the Bernoulli polynomials in the porous wall theory was Brescia [4.20], even though he 
did not identify them as such. Unfortunately, his elegant theoretical result went almost unnoticed and preference was given to special 
interference factors, discussed in Section 4.7. 

From Equations (4.94) to (4.97) we obtain for solid walls, T = 0, 

1 a      1    im 
"w(0,0) = -— + --— (4.98) 

2 |32h      6   j33ij2 

1     OJTT 
vw (0,0) = — — •     (4.99) 

3"W 1       (JTT 
1^(0,0) =  (4.100) 
3x 6 j33h2 

. 3^W 1      TTT . . 
— (0,0) = — —^ (4.101) 
ax 12 ;3h2 

Equations (4.98) to (4.101) are classical results of closed wall theory. The first term of Equation (4.98) is the wake 
blockage correction due to Thom [4.15] and Goethert [4.21]; the second term is the solid blockage correction by v.Baranoff [4.22]. 
Equation [4.99), upon substituting for co from Equation (4.23), is recognized as the incidence correction according to Allen and 
Vincenti [4.23]. Equation (4.100) is the velocity gradient correction derived by Thom [4.15]. Finally, Equation (4.101) is the stream- 
line curvature correction given by Prandtl [4.24] in his original work on wall interference. 

Similarly, for open jet boundaries, T = 1, 

Uw (0,0) = --^-^ (4.102) 

1 7       1   COTT 
vw(0,0) = -- f--—■ (4.103) 

2 h     6 j3ij2 

3"W 1       CTTT 
-7—(0,0) = - — -— (4.104) 
ax 12 ^3^2 

T-(0,0) = ---^ (4.105) 
. ax 6 ^^2 

Again, these are well-known correction formulas, cf. Pankhurst and Holder [4.25]. It is worth noting that open jet walls do not 
cause wake blockage, Equation (4.102), but the incidence correction is large, dominated by the term proportional to c/h, see 
Equations (4.103) and (4.20). The incidence correction for solid walls, as we may verify on Equations (4.99) and (4.23), is an order of 
magnitude smaller, proportional to (c/h)^. 

For ideal slotted walls, 1/P = 0, F > 0, the theory is not nearly as neat as for porous waUs. From Equations (4.39, (4.40), 
(4.54), (4.55) and (4.84) to (4.89) we have 
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and 

31 
^ (0,0) = 0 (4.106) 

—A^,^) = -'^  /   —TT-rr^r-^—rds (4.i07) 
9X2 J     cosh (s) + Fs sinh (s) 

0 

 (0,0) = 0 (4.108) 
3X3 

3J TT 
^(0.0) = ^^;:^ = Tn// • (4.109) 

3^J /■ (1 - Fs) e-^ 
(0,0) = 4    / !^ '-  ds (4.110) 

ax9Y'"'"'     '   /    1 
X      — sinh (s) + F cosh (s) 
'J       s 

a3j 
(0,0) = 0 (4.111) 

3xaY 

Closed form solutions for the integrals (4.107) and (4.110) have been found only in the limit F -*■ oo; they tend to the solid wall values 

a^I 7r2 , 
 (0,0) = — 
3X2 3 

32j ff2 

■^''-'^--^ 

as may be verified by substituting T = 0 in Equations (4.91) and (4.92). 

4.7   Wall Interference Factors 

The earlier treatments on classical wall interference [4.11] to [4.14] employ special wall interference factors in place of our 
functions I and J, Equations (4.61) and (4.47). The former were introduced for each effect in an ad hoc fashion, as the wall interference 
theory evolved, making the treatment much less systematic. The relations of the interference factors to the derivatives of I and J are 
added here to provide continuity with the earlier developments; otherwise this entire section can be skipped. 

The following six interference factors appear to be well established: 

wake blockage factor 

1 _o^ 

|32h 
ew =  2 ~ "w (4.112) 

wake blockage ratio 

solid blockage factor 

solid blockage ratio 

1   31 
i^w = - 1^(0,0) (4.113) 

1       jlT! 

„ 3   3^1 
"s = (0,0) (4.115) 

TT^   3X2 ,     ' 
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upwash factor 

streamline curvature factor 

1     92j 

The term "blockage ratio" is used for the ratio of the blockage factors in ventilated and solid walls. We readily verify from 
Equations (4.91) and (4.93) that for solid walls, P = 0, indeed Sl^ = D,^ = 1. Graphs and tables of the above factors can be found in 
References [4.11] to [4.14]. 

For perforated walls, F = 0 

!1 , P = 0 

(4.118) 

2B,(1)       , P>0 

"s = 6B2(J) (4.119) 

So=--B,(—) (4.120) 

Sl=-2B,(—) (4.121) 

The wake blockage ratio is discontinuous at P = T = 0, in accordance with our earlier discussion in Section 4.6. 

For ideal slotted walls, 1/P = 0, 

n^ = 0 (4.122) 

>/' 
4(1 + F) 4 

but S^j and 5 j have to be obtained numerically. 

Using Equations (4.112) to (4.115), the velocity correction (4.80) becomes 

uw(0,0) = e^ + e. 

(4.123) 

1     "    „ 1      UTT   „ 
= ^—"w + T—-"s (4.124) 

^ jS^h ° p^h^ 

For solid walls, P = 0, the correction formula (4.98) is obtained. 

Using Equations (4.116) and (4.117), the incidence correction (4.81) becomes 

27 „      2cj ^ 
vw(0,0) = -f 5(,+ 61 (4.125) 

" |3h2 

which upon substituting for the singularity strengths from Equations (4.20) and (4.23) takes the familiar form used in Reference [4.12]. 
Since the standard wall interference factors are defined up to the second derivatives of I and J, they are sufficient for expressing only 
the first terms of the velocity gradient and streamline curvature corrections. Equations (4.82) and (4.83): 

^"W 1     ov 
-5^(0.0) =^ ^—-"s (4.126) 

9v^ 27 
--(0,0) --i Si (4.127) 
3^ /3h2 

Recently an additional "pressure gradient factor" has been proposed [4.11], which relates to the third derivative of I. 
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4.8   Corrections to Measured Quantities 

The correction to tunnel stream velocity is 

AU^  = U„ uw(0,0) (4.128) 

where the velocity U„ is assumed to be measured far upstream*, out of the aerodynamic influence of the airfoil. The correction is to be 
interpreted in such a way that the pressure distribution measured on the airfoil in the wind tunnel at stream velocity U^ corresponds to 
that which would be obtained if the airfoil were tested in free air at the velocity U„ + A U„. 

In isentropic flow of perfect gas, U„ relates to the stream Mach number M„ according to 

KRTQ , ■ 
■Mi ;       ■ 

K- 1     , 1 + —Mf 

where K = 1.4 (for air) is the ratio of specific heats, R is the gas constant and the stagnation temperature. By differentiating the relation 
and dividing it by itself we obtain the Mach number correction 

AM„  = M +!^Mij M^uw(0,0) (4.129) 

Prom isentropic flow relations corrections can also be made to the stream static pressure and density. Expanding 

in binomial series, taking the first two terms and interpreting 

p = p„ + Ap„ 

U2              /U„ + AU„y 
1 = 1-       =;-2uw(0,0) ^ ui \    u„    / 

we obtain the blockage correction to stream static pressure 

Ap^  = - K Mi p^ uw (0,0) (4.130) 

Using the fact that 

- = (-T 
we similarly arrive at the blockage correction to stream density 

Ap_  = - Mi p„ uw (0,0) (4.131) 

The blockage correction to stream dynamic pressure is then 

A (-p„ Ui J   = p„ U„ AU„ + - Ui Ap„ 

= -P-Ui (2-Mi^ uw(0,0) (4.132) 

and using this result we obtain the blockage corrections to the lift, drag and pitching moment coefficients 

ACL = - (2 - Mi) CL uw (0,0) (4.133) 

*Since the far upstream velocity is not necessarily equal to the far downstream velocity, it would be more logical to use, as in Reference [4.26], the subscript 
-"> instead of «>. 
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ACD  = - (2 - Mi) Cp uw (0,0) (4.134) 

ACM = - (2 - Mi) CM UW (0,0) (4.135) 

The pressure coefficient 

P - P- 
C, 

-P„ui 

on the airfoil surface will also require correction because of changes in both the static and dynamic pressures of the tunnel stream. Thus 

p-(p„+Ap.) 
AC„ = ^ - n 
Pi /I \      P 

-p„Ui.A^-p„Uij 

from which, using Equations (4.130) and (4.132) and the fact that 

ui 
Mi   =   

P» 
K  

, ,   ■ P» 

we obtain [4.27] 

ACp =  [2- (2-Mi)Cp] uw(0,0) (4.136) 

Using this expression, the correction formulas (4.133) to (4.135) can be readily verified; the term 2 u^ (0,0) is a constant that drops 
out when integrating along a closed contour. 

In incompressible flow Equation (4.130) is replaced by 

Ap.  = -pUiuw(O,0) (4.137) 

which follows from the Bernoulli equation. Incompressible versions of the other correction formulas, Equations (4.131) to (4.136), are 
formally obtained by substituting M„ = 0. 

The angle of attack correction (in radians) is directly 

Ao! = vw (0,0) (4.138) 

Again, the correction is to be interpreted in such a way that the pressure distribution on the airfoil measured in the wind tunnel at angle 
of attack a corresponds to that in free air at angle of attack a + Aa. 

The corrected lift and drag are obtained by resolving the measured aerodynamic force into the directions normal and parallel 
to the corrected stream velocity vector. Accordingly, the incidence correction to the lift coefficient is 

ACL = CL [COS (Aa) - 1] - Cp sin (Aa) 

- - CD Aa (4.139) 

and the incidence correction to the drag coefficient 

ACD = CD [COS (Aa) - 1] + CL sin (Aa) 

- CL Aa (4.140) 

where CL and C^ are the coefficients of the aerodynamic forces normal and tangent to the wind tunnel axis respectively Since the 
correction (4.140) is extremely sensitive to Aa, it is safer to obtain drag by wake measurements. (C^^, is not subject to incidence 
correction.) " 
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Regarding the drag correction (4.140), another word of caution is in order. According to the present theory v^ (x,y) -*• 0 
as X -*■ oo, so that the wake far behind the airfoil is parallel to the oncoming stream (tunnel axis) as it would be in unbounded flow. 
However, the rotation of the axes of reference through an angle Aa, on which Equations (4.139) and (4.140) are based, violates the 
downstream condition and it is clear that there must be some practical limits up to which the incidence correction is applicable. The 
general consensus [4.28] is that |Aa| should not exceed 2°. 

The derivatives ^U\^./^x and 3v^/9x are most undesirable, since they vitiate the purpose of the wind tunnel test, namely the 
determination of the airfoil performance in uniform flow. However, if they are not large, the effects of flow nonuniformity can be 
approximated by residual corrections to the force and moment coefficients. 

The velocity gradient correction to drag coefficient is approximated as 

ACD = - 2Ac ^—(0,0) (4.141) 
ox 

using the fact that the buoyancy force is the product of the pressure gradient and the (effective) volume of the model; for more 
rigorous treatment see Glauert [4.29]. Since A is the nondimensional airfoil area and 3u^/9x is of dimension length"', the correction 
is dimensionless as it should be. The buoyancy force is not of viscous nature and therefore the above correction is not to be applied to 
the drag coefficient from wake traverse measurements, if these are reduced in the usual way [4.27]. 

The streamline curvature effect is equivalent to a distortion of the airfoil camber [4.29]. Its effects on the lift and pitching 
moment coefficients can be estimated using the subsonic thin airfoil theory, e.g. Reference [4.30]. For simplicity, we assume that the 
airfoil is the line segment x^ < x < Xj, y = 0, where x^ and Xj are the x co-ordinates of the leading and trailing edge respectively and 

C   =   Xj - XL 

Furthermore, the chordwise distribution of the y component of wall interference velocity is approximated by the first two terms of a 
Taylor expansion: 

vw(x,0) = vw(0,0) + x-—(0,0) 
dx 

Under such assumptions, the streamline curvature correction to the lift coefficient is derived as 

If, as recommended by Glauert [4.29], the origin is placed at the mid-chord point, 

1 
^L — c 

2 

then 

To the order of approximation employed, the streamline curvature correction to the quarter-chord pitching moment 
coefficient is found to have a value independent of the location of the origin 

^^-c/4  = J'^-^(O.O) (4.144) 

Again, the sign convention is such that the correction value is to be added to the measured quantity in order to obtain the corrected 
one. Comparing Equations (4.143) and (4.144) we arrive at a familiar result, namely that the streamline curvature correction to the 
quarter-chord pitching moment coefficient is four times less in magnitude than that to the lift coefficient. For practical purposes this 
correction is often found insignificant. 

4.9   Effect of the Reference Station Location 

In the previous developments the disturbance velocity was assumed to vanish infinitely far upstream. As discussed in 
Section 4.6, this approach leads to a discontinuity of the velocity correction at zero porosity, which is not a true physical behaviour of 
actual, finite-length test sections. However, the problem can be alleviated if as reference a finitely distant upstream point x^^f, y^^f is 
considered, see Figure 4.1. In fact, this is in agreement with the usual practice of determining the velocity of the oncoming stream from 
pressure measurement some distance upstream of the airfoil. 
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Retaining the symbol U„ for the measured stream velocity at the reference point, the velocity correction at the model 
position X = y = 0 is expressed as 

AU„  = U„ [uw (0,0) - u (x,,f, y,ef)] (4.145) 

The term 

"(Xref,yref)   =   -^('i^ref>yref) + -^(Xief,yief) (4.146) 

represents the disturbance velocity at the reference point, due to the presence of the airfoil and wall interference. By subtracting it, 
we thus measure the wall interference velocity from the undisturbed stream level. In the velocity difference of Equation (4.145) the 
discontinuity of the wake blockage correction cancels out, as long as x^^j is finite, see Reference [4.18]. 

Without going into details, we mention that the potentials i^p and 0\y are given by Equations (4.14) and (4.30) and the x 
derivative of <^ can be evaluated using the series solutions in Sections 4.2 to 4.5. A similar replacement of u^y (0,0) by the difference 
Uyy (0,0) - u^ (x,ef, yref) is also applicable to correction formulas (4.130) to (4.137). 

4.10   Effect of the Test Section Length 

The theory of a finite-length test section with porous-slotted boundaries is more complicated and analytic solutions for waD 
interference corrections are known only in some particular cases. Woods [4.31] studied the case of an airfoil located centrally between 
two walls which are porous over the length 5 and solid elsewhere. Figure 4.10. Using the mixed boundary condition 

3x \ '    2^    P  3y V      2/ 

90 /      h\ 
-^   X,+ -    = 0 
9y \       2/ 

IxK- 

1x1 > -       : (4.147) 

where 0 is to be decomposed according to Equation (4.3), the following velocity correction is found [4.31] 

1 a 
"w (0,0) = - — 

2 (32h 

1     HIT 

6  |33h2 

1-2 tanh —— + T tanh —— 
i3h 2|3h 

TTC TTCT     3 
l-3Ttanh  tanh + -TMtanh^^)| (4.148) 

2(3h (3h      2       ' ""' '  ' 
(tanh 1 
V        2(3h/ J 

Comparing it with Equation (4.124), we see that the terms in square brackets qualify as the blockage ratios for the finite-length test 
section. 

It is easily verified that u^^ (0,0) is a continuous function on the interval 0 < r < 1 as long as the porous waU length 8 is 
finite. If £ -> oo, then 

tanh   ->■ 1 
2/3h 

MT (     0       ,       r = 0 
tanh >■     \ 

P^ [      1 , 0   <   T   <   1 

and we arrive at the correction formula (4.94), which is discontinuous at T = 0. 

The effect of the finite length of the porous test section on airfoil lift and pitching moment is treated in Woods' subsequent 
paper [4.32]. However, as shown by Parkinson and Lim [4.33], for ordinary test sections having )2/h > 1.5, the effect of the up- 
stream and downstream portions on the incidence correction is not significant. For more details of the wall interference on lifting 
airfoils in a test section with finite-length porous walls the reader is referred to the book by Woods [4.26]. A summary on the length 
restrictions for ventilated test sections is also given by Vayssaire [4.34]. 

4.11   Effect of Plenum Pressure 

A numerical technique (method of singularity distributions) for the calculation of wall interference in porous wall test 
sections was presented by Sloof and Piers [4.35]. Their computations show that wall interference depends strongly on the location of 
the tested airfoil inside the finite-length test section and on the plenum pressure. The latter effect enters the pictiure by employing the 
inhomogeneous boundary condition (2.20) instead of (2.23). 
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An analytic study of the plenum pressure effect on solid blockage between porous walls was recently given by Sayadian and 
Fonarev [4.36]. In their treatment the porous walls are assumed to be infinite, however the plenum chamber length, 2, is finite, see 
Figure 4.11. Accordingly, the porous wall boundary conditions are 

P 3y i) 
  Q 
2     Pplenum 

1x1 > 

|x| < 

(4.149) 

The solid blockage correction, obtained by the Fourier transform method is 

/ 

uw (0.0) 2      t'plenum 
■© sin ( — I cosh(s) ds oa 

-   ( 
0      s  cosh^(s) + l-l cosh''(s) + l-l   sinh'^(s) 

(4.150) 

The first term is the usual correction for infinite-length test section, cf. Equation (4.94). The second term, wliich is independent of 
the doublet strength n, is the velocity correction for flow between the test section and plenum, caused by the pressure difference 
P"> ~ Pplenum- W^ ""^ that the integral vanishes if /3/P = 0 or 5 = 0. In the limit 9.-*°°, the term in curly brackets tends to unity and 
the correction formula (4.150) reduces to 

Uw (0.0) ©4 2     Pplenum 

which indicates that the plenum pressure has completely filled the test section. If the plenum pressure is used as reference, p„ = Ppj^ 
then the pressure term in the velocity correction drops out. This applies to Equation (4.150) as well. 

From Equation (4.150) it follows that for given wall porosity and plenum length, the solid blockage can be minimized by 
adjusting the plenum pressure. If the plenum pressure cannot be controlled, say C, 

wall porosity is such that B2 (-] = 0, i.e. T = 1 - 1/^3^ and P//3 = 0.782. 

Pplenum ■ 0, the solid blockage is absent only when the 

Motivated by Sears' self-correcting wind tunnel [4.37], Sayadian and Fonarev [4.36] also treat the case of top and bottom 
plenum chambers consisting of two segments each, whose pressures can be adjusted individually. This arrangement allows to eliminate 
simultaneously the velocity and the velocity gradient corrections. 

4.12   Concluding Remarks 

The term "classical", adopted in the present Chapter, is in accordance with Reference [4.38], where it is used to categorize a 
wall interference theory based on the knowledge of the tunnel boundary condition and the representation of the airfoil flow field by 
singularities. 

The present treatment has been limited to the representation of the airfoil by a source, vortex and two doublets, but may be 
analogously extended to higher-order singularities (quadrupoles, etc.). A question then arises as to whether the representation by the 
first few singularities is adequate or, more precisely, under what circumstances the derived corrections converge. Using the ratio test 
and properties of Bernoulli polynomials [4.39], a simple convergence criterion for a thin airfoil between porous walls is derived in 
Reference [4.4]: 

|3h 
< 1 (4.151) 

where c is the airfoil chord and h is the test section height. As expected, there is an interdependence between the stream Mach number 
and the ratio c/h. However, as indicated in Reference [4.34], the condition (4.515), based on linearized theory, is not particularly 
strict; e.g. for c/h = 0.34 (a very large model with respect to the wind tunnel) the limit Mach number is as high as M„ = 0.94. In many 
practical situations, however, the flow at the walls would be supercritical at much lower values of M„, making the linear theory 
inapplicable. 
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Table 4.1    Increment of airfoil area in transonic flow 

CL A 6A 6A/A 

0.215 0.0823 0.0025 3% 

0.370 0.0823 0.0075 9% 

0.550 0.0823 0.0165 20% 

NACA 0012 airfoU 

M„  = 0.8 t/c = = 0.12 h/c = 6 

Fig. 4.1    Linear and nonlinear flow regions 
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Fig. 4.2    Singularities representing subsonic tar field of the airfoil 
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Fig. 4.7    Graph of aj/3Y (0,0) 

1    1    1   / 

q 

1    1 J 
>- 
^ 3 

I'M^ 
X 

o 
^Rj 

o 
^^ 

l^ ^—' 
-11^^:=^ 
^^1— 

o 

I 1   1   1   1 

1// 

1.000 

0.900 

0.800 

0.500 

0.400 

0.300 

0.100 

0.000 

0.0       0.1 0.2 0.3 0.4 0.5 

T 

0.6 0.7 0.8 0.9 1.0 

Fig. 4.8    Graph of a^J/aXBY (0,0) 



69 

Fig. 4.9    Graph of d^J/dX^dY (0,0) 

Fig. 4.10    Finite-length ventilated test section 

Fig. 4.11    Finite-length plenum chamber 
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5.0 EXTENDED POROUS WALL THEORY 

5.1 Unequal Upper and Lower Porosities / Method of Images 

In this section we will consider the extension of the porous wall theory to test sections having unequal upper and lower wall 
porosity parameters. The case is of relevance if the walls are of different open area ratios or if they are identical, but display unequal 
resistances to inflow and outflow with respect to the test section, such as the walls with normal perforations, see Chapter 2. 

The problem is solved by the method of images which is less general*, but far more effective than the Fourier transform 
method, since it yields the solutions directly in the infinite series form. The method is applied in the complex plane 

Z = X + lY (5.1) 

where 

X y 
X = —,      Y = - 

|3h h 
(5.2) 

are nondimensional co-ordinates, reducing the governing potential equation to the Laplace equation, which is the necessary prerequisite 
for the use of analytic functions. For generality, we assume that the airfoil is located at an arbitrary position xg, yg in the wind tunnel. 
The complex co-ordinate of the airfoil location in the transformed plane is thus 

^0  ~ ^0 Xn  + iYn (5.3) 

where 

Xn   = — . 
yo 

iSh' "       h 

From Equations (4.14) - (4.18), replacing x by x - Xp and y by y - yg, we obtain the complex disturbance velocity 

(5.4) 

30P 30F 
WF(Z) = — (x,y) - i— (x,y) 

+ j 
M      d 

27r(Z-Zo) 27r(Z- Zg)     §^h dZ 27r(Z-Zo) 

CO    d 

j3h  dZ 27r (Z - Zg) 
(5.5) 

The problem then becomes that of finding the complex velocity 

3(/iW 30W 
Ww(Z) =-^(x,y) - i-^(x,y) (5.6) 

which is analytic in the infinite strip -°° < X < °°,  | y | < — and, according to Equations (4.6) and (4.7), satisfies the porous wall 
boundary conditions 2 

Re [WF(Z) -I- Ww(Z)1 - — Im |wp(Z) + Ww(Z)]  =0,    Z = X -^ -,    -<>° < X < (5.7) 

;[wp(Z) -^ Ww(Z)]  -^ |-Im [fl Re|Wp(Z) + Ww(Z)|  + — Im |WF(Z) -^ Ww(Z) ] = ., Z = X ,    -oo<x<°° 
2 

(5.8) 

where Py and PL are the upper and lower wall porosity parameters respectively. 

Concerning uniqueness we can, in accordance with Equations (4.9) and (4.10), make the following observations. If W^ is a 
solution of the above problem for Pu  = PL ~ ", then is also 

Ww(Z) = Ww(Z) + A 

where A is an arbitrary real constant. Similarly, if W^ is a solution for l/Py = 1/PL = 0, then is also 

Ww(Z) = Ww(Z) -iB 

where B is an arbitrary real constant. These constants can be fixed by satisfying the upstream condition 

(5.9) 

(5.10) 

*Not applicable to the slotted wall boundary condition because it contains different-order derivatives of the velocity potential. 
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lim      Ww(Z) = 0 (5.11) 

As a starting point we consider a unit source 

1 
WF(Z) = 

27r(Z- Zo) 

and construct the function W^ analytic in the half plane Y <— and satisfying the upper wall boundary condition. Equation (5.7). 

Since Wp has a simple pole at Z = Zg.jve conjecture, by the Schwarz reflection principle and the form of Equation (5.7), that W^ has 
a simple pole at the image point Z = Zg + i, where 

The upper wall image can thus be written 

W^(Z) 
2ir(Z - ZQ - i) 

where 

c = a + ib 

is an unknown pole strength. Substituting in Equation (5.7), we obtain the equation 

X-Xo 

Yo 

~     1 + a - -^b    + P^ - -^ a - b)  =0 
1      Y      \ PU    /        \PU Pu / 
2 

which, since it holds for an arbitrary X, represents two simultaneous equations for a and b. The solution is 

132+P2 
= cos (TTTU ) 

where 

in agreement with Equation (4.44). Consequently 

In a similar fashion we can show that the pole 

WJJ(Z) 
27r(Z - ZQ - i) 

has the upper wall image 

and the lower wall image 

where 

WU(Z) = 
^    '       27r(Z- ZQ- i) 

W^(Z) = 
ff + 17 e       ^ 

2n (Z - ZQ + i) 

(5.12) 

b =  —  = sm(7rTu) 
(32+P^ 

Tu = -  atan —, 0 < ry < 1 (5.13) 

^-^^) = ^i^i^ f^-") 

TL = - atan — ,      0 < 7L < 1 (5.15) 

The bar above the symbols, denoting complex conjugation, is retained in the above formulas to facilitate the description of images 
produced by multiple reflections. 
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Since in complex variables the exponential function defines a simple rotation, we immediately see that the complex 
disturbance velocity induced by a perforated wall is obtained from that induced by a solid wall by the rotation through the angle TTTy 
or -TTTL, depending on whether the upper or lower wall is considered. For open jet walls, ry  = TL = 1, the rotation angles are ir and 
-IT respectively, which confirms the well known fact that the solid and open wall images have opposite polarities [5.1]. These findings, 
making the application of the image method to porous walls possible, were first made by Kassner [5.2]; for further discussion and 
illustrations also see Goethert [5.3]. We are mentioning these facts to show that the parameter T, introduced formally in Equation (4.44), 
has also a physical meaning. The integral form solutions in Chapter 4 are, of course, more difficult to interpret. 

In the case of two walls, the boundary conditions (5.7) and (5.8) have to be satisfied simultaneously. By analogy with the 
formation of optical images by two parallel mirrors, the boundary effect of two walls is given by a sequence of images located at ZQ + i, 
ZQ - i, ZQ + 21, ZQ - 21, ZQ + 3i, and so on, see Figure 5.1. Following the approach of Ebihara [5.4], the boundary effect of the porous 
walls for the pole (5.14), is then given by infinite series 

Ww(Z) = 
a +17 e „   ,   •       -l^Tj^ ,   .       -17TTT,     ITrrTT ;   :       iTTTrr     -Ijrrr, 

o + iy e       ^ a +VY e       ^ e     ^        a + vy e     " e       ^ 

2it (Z- ZQ- i)       27r (Z - ZQ + i) 2;r (Z - ZQ - 2i) 27r (Z - ZQ + 2i) 

= (a + i7)B(Z) + (a + iT)E(Z) 

o [B(Z) + E(Z)]   + i7 [B(Z) - E(Z)] (5.16) 

where 

E(Z) 

00 

i7rm(Tu + IL) -iwm(ru + TL) 

Z - ZQ - i 2m Z - ZQ + i 2m 

27r 
m = l 

m = l'- 

giir[mTu + (m - 1)TL ]        ^-iir[(m - 1)TU + HITL ] 

Z - ZQ - i(2m - 1) Z- Zo +i(2m- 1) 

(5.17) 

(5.18) 

These series can be summed using the Fourier expansion of the function exp(tx) on the interval 0 < t < 27r (Mittag-Leffler 
theorem), see for details Reference [5.5] : 

exp 

B(Z) = 

TT   (Z-Zo) 

exp[7r(Z-Zo)] - 1 27: (Z- ZQ) 
(5.19) 

exp 

E(Z) = - 
■^ —-— (Z-Zo) 

2     exp [!r(Z- ZQ)] +1 
exp 

I-U-TL 
(5.20) 

where 

0 <    < 1 
2 

At the end points of the porosity interval, the functions defined by infinite series (5.17) and (5.18) experience jump discontinuities; in 
other words the series do not converge uniformly on the corresponding closed interval [5.6]. As a result, the values obtained by the 
substitution 

i-U+i-L 
0 or 1 

in Equations (5.19) and (5.20) differ from the correct series values (5.19) and (5.10) by constant terms, see Reference [5.4]. However, 
in view of conditions (5.9) and (5.10) and the requirement to satisfy Equation (5.11), these constants can be disregarded at this point. 

The function B has a removable singularity at Z = Zg and can be expanded in its vicinity in the power series 

n-l 

B(Z) E 
n = l 

B„ 
I-U+I-LX    [7^(2- Zo)] 

Z - ZQ I  < 2 (5.21) 



where B„ denotes the Bernoulli polynomials 

Bi(T) = T 

B2(T) = T2 - T + - 
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BgCT) = T3 - - T2  + -T 

etc., see Reference [5.7]. Similarly, the function E can be expanded about the point Z = ZQ as 

(5.22) 

E(Z) = - - exp 

where E^ denotes the Euler polynomials 

TU- TL 

J2 ^" 
ru + M WZ-Zo)] 

->  n = 0 

Eo(T) = 1 

Ei(T) = T  

E2(T)  = T2 -  T 

etc., again see Reference [5.7]. 

I Z -   ZQ   I    <   1 (5.23) 

(5.24) 

Using the result of Equations (5.14) and (5.16), the complex disturbance velocity W^, corresponding to Wp, Equation (5.5), 
is constructed as 

Ww(Z) = j  [B(Z) + E(Z) + X(PU)X(PL)]   + iT [B(Z) -  E(Z)]   + "^ — [B(Z) + E(Z)]   + i — — [B(Z) -  E(Z)]     (5.25) 
P p^n dZ ph dZ 

The term 

[   1    ,    Pu  = PL  =  0 

X(PU)X(PL) =  I 
y  0   ,    otherwise 

(for definition see Equation (4.62)), is added to the source contribution in order to satisfy the upstream condition (5.11). 

Using Equations (5.2) and (5.6), the wall interference corrections at the model position Z = Zg are obtained as follows: 

velocity (blockage) correction 

incidence correction 

Uw(xo>yo) = ^ Re[Ww(Zo)] (5.26) 

vw(xo,yo) = " ]^ I™ [Ww(Zo)] (5.27) 

velocity gradient correction 

streamline curvature correction 

Buw 1 
(xo.Yo) = TTTT^ Re ax j32h2 

dWn 

dZ (Zo) (5.28) 

3vw 1 dWvi 

dZ (Zo) (5.29) 

The detailed correction formulas can be worked out by substituting from Equations (5.20), (5.21) and (5.25). However, in order to 
avoid cumbersome expressions, it is advisable to adhere to complex variables and let the computer find the real and imaginary parts. 
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Although situating the airfoil off axis may have certain potential benefits, cf. Wieselsberger [5.8], the most common test arrangement 
is to place the airfoil on the tunnel axis. Putting Z = ZQ, we obtain from Equations (5.21), (5.23) and (5.25) the following corrections 
for unequal upper and lower wall porosities: 

uw(0,0) 
(32h 

4(33h2 

1       /'"U+'"L\      1        /   '"U-''L\ 

4/3h 

''u- TL 

4(32h2 

''u- TL 
(5.30) 

vw (0,0) =   sin I -R 

+         El 4j32h2 

/   I^U-TLN      7 fl       /'"U+'"L\      1        /   ^U-TL\ 

(5.31) 

3u W on 

3x 4/33h2 

/XTT^ 

/34h3 

1      /i-u + TL\    1      Au + I-LN      / 

TV- TL 

I'D - TJ: 

■yir 

4(52h2 

I'D - TL 

4(33h2 

I 1 sin TT 
\     2     j      \ 

Au + I-LN     /   I"U - '"LX .(^-^-jsin^.-^-j (5.32) 

3vw 
^—(0,0)   = 
ax 4|32h2 

OTT       AU+'"L\     /   I-U-^LX       yn    r    /'■U+''LX AU+'"LX       /   T-U-TLX 

4/33h3 

/'"U+'"LX      /   '"U-'^LX       toTfS fl      Au+aX    1      AU+I"LX      /   ^-u --^LX 
(5.33) 

Setting Tu = TL = T we recover the earlier derived formulas (4.94) - (4.97) for equal porosities. However, if ry  + TL.the 
usual symmetry and antisymmetry flow conditions no longer apply and we notice that 7 and co also contribute to the velocity correc- 
tion and a and n affect the incidence correction. For larger differences between Ty and TL the magnitude of the velocity correction 
due to lift overshadows the wake and solid blockage terms. This leads to difficulties, if it is desired to test airfoils at varying incidence 
and constant Mach number. 

Having Equations (5.30) - (5.33) at hand, it is easy to obtain the corrections for the special case Tu  = 1, 7L  = 0, which is 
complementary to the earlier analyzed cases Tu = ^L = 0, Equations (4.98) - (4.101), and Ty  = ^L  = 1, Equations (4.102) - (4.105). 
For the lower wall solid and the upper wall open we thus have 

Uw(O.O) 
7 1       MT 

4(3h       48 /33h2 

a 1     COTT 
vw(0, 0) =     +  
*^ '   '      4|3h        48   (3h2 

9UW 1 CTJT 1      CJ7r2 
-— (0, 0) = - —  -r-r + 
ox 48    j33h2       16   i33h3 

(5.34) 

(5.35) 

(5.36) 

9vw 1     77r        1     MTT^ 
~^ ^°' ^* " 48" ^ "  le" ^2h3 

(5.37) 

From the point of view of the design of minimum correction test sections, this case is of considerable interest since at high Mach 
numbers the flow is not prone to choking on the upper (suction) side of the airfoil and yet the incidence correction (5.35) remains 
small. The lift-dependent velocity correction (5.34) is unfortunately large. A low correction wind tunnel, utilizing one wall solid and 
one wall with transversal slots, has been designed by WUUams and Parkinson, References [5.9] and [5.10], with encouraging results 
for testing of high lift systems. 

The practical importance of the derived corrections (5.30) - (5.33) is that they account for the difference of porosity factors 
on the walls opposing the suction and pressure sides of the airfoil, regardless of whether the difference is caused by unequal open area 
ratios of the walls or different physics of inflow and outflow. The porosity parameters can be estimated by comparing the theoretical 
pressure coefficients. 
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Cp(x,y) = -2 -^(x.y) 

= - — Re [WF(Z) + Ww(Z)] (5.38) 

with the measured ones near the walls [5.5]. 
I '        ■• 

5.2 Least Squares Method to Determine Pu> I*! 

The preceding section shows how the theoretical wall boundary pressure distribution (5.38) can be calculated for given values 
of Pu and PL. In a practical situation, though, we do not know what values should be used for Py and PL. However, if we know the 

wall boundary pressures from measurement, C^, we can then compare this measured value to the computed value C^ and minimize 
•^ p 

i = l 

where N is the total number of pressures taken on (or near) both the upper and lower walls. The minimization of S is achieved by 
varying Py and PL . 

To carry out the process numerically we differentiate S with respect to Py and PL and set the derivatives to zero, thus giving 
two simultaneous nonlinear algebraic equations, which are solved by Newton's method. The partial derivatives 

3 Pu      \        3 PL 

which are needed for the method are approximated by differences 

Cp. (Pu + APu) - d;, (Pu) 

Here APy is taken to be 0.05, while we assume as a starting point P^ = 1.0, Pr   = 0.5. 

Results of a typical optimization are shown in Table 5.1. The initial porosity parameters give ha = -0.67° and AM_ = 
-0.0060 with the sum S = 0.0102. After only 2 Newton steps we arrive at the optimum Py  = 1.53, PL = 0.54 with Aa = -0.72°, 
AM_, = -0.0083 and S = 0.0068. The final wall pressure distribution after optimization is shown in Figure 5.2. 

5.3 Variable Porosity Method 

So far it has been assumed that the porosity along the walls is constant, although it can be different for the upper and lower 
walls. However, in practice it can be seen in some cases that one or both walls experience both inflow (Cp   <  0) and outflow 
(Cp > 0), see Figure 5.2 for example. Thus it is desirable to ascribe a constant Pj„ to the inflow portions of the walls and different 
constant P^ut to the outflow portions. The disadvantage of such an approach is that an analytic solution is not available and a numerical 
solution must be sought. 

The numerical solution has been described in Reference [5.11]. Here we present only a brief outline of the technique. 

We again assume that the total disturbance potential is made up of the free air disturbance potential and the wall disturbance 
potential: 

0   =   0p    +   0^ 

where 0p is given in Equation (4.14) and includes contributions due to lift, cross-sectional area, pitching moment and wake drag, 
Equations (4.15) - (4.18). The problem reduces to that of solving Laplace's equation 

+ -r-ir  = 0 
3X2 aY2 

subject to 

0W  = "'/'F 

at an upstream line X = -X  and 

90W 30F 

ax hx 
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at a downstream line X = X^, where X and Y denote the transformed variables, Equations (5.2). Also on the upper and lower walls 
we have 

p  d(pTf/      d<lhf/ /p  90p       3(^p 

J  dX   ~ ^ ~ ~ \!5   ax   *   3Y 
for        Y = +- 

2 

In the preceding porous wall boimdary condition we choose P according to whether there is inflow or outflow at the partic- 
iilar X location. Thus 

p = p. for Cp < 0 

and 

for 

Since we do not know in advance from the theory whether there is inflow or outflow, we assume, for the first iteration, that 
the upper wall has an inflow condition, while the lower wall has complete outflow. Thus on the first iteration we recover the constant 
porosity solution and can compare our numerical solution with the analytical solution obtained in the previous section. Table 5.2 shows 
such a comparison: it can be seen that the numerical solution is very good as judged by the pressure distributions on the upper and 
lower walls and the Mach number and angle of attack corrections at the quarter chord point. 

Also shown in Table 5.2 is the variable porosity solution obtained after 2 iterations of adjusting the porosity to be an inflow 
or an outflow value (in this case 1.5 or 0.5 respectively). The corrections AM^ and Aa in the bottom portion of the table are seen to be 
affected very little. 

The variable porosity method just described, in combination with the least squares optimization process, has been used to 
determine Pi„ and P^^^ for some typical test cases in the NAE 20% perforated wall test section. The results are summarized in Table 5.3, 
which also shows the results for constant optimum porosities. We see that there are hardly any differences in AIVI_^ and only very small 
differences in Aa. This seems to indicate that the basic method utilizing unequal, constant porosities for upper and lower walls is a 
very satisfactory approximation. In Table 5.3 are for comparison also shown the corrections obtained directly from measured wall 
pressures using the fast Fourier transform technique (FFT), which wiU be described in Section 6.3. 
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Table 5.1   Optimization process for wall pressxire distributions, Figure 5.2 

77 

Newton 
step Pu PL Aa AM^ S 

0 1.00 0.50 -0.67 -0.0060 0.0102 

1 

1.05 

1.00 

1.47 

0.50 

0.55 

0.56 

-0.67 

-0.70 

-0.74 

-0.0064 

-0.0054 

-0.0078 

0.0094 

0.0111 

0.0069 

2 

1.54 

1.47 

1.53 

0.56 

0.61 

0.54 

-0.74 

-0.77 

-0.72 

-0.0080 

-0.0072 

-0.0083 

0.0069 

0.0073 

0.0068 
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Table 5.2   Theoretical wall pressure distributions and corrections 

M„ = 0.758, CL = 0.58, A = 0.08, CD  = CM  = 0, h/c = 6, ?;„ = 1.5, P^^^ = 0.5 

x/c 
constant 
porosity 

CPu 

exact 
variable 
porosity 

free air constant 
porosity exact variable 

porosity 
free air 

-21.133 -0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.000 

-18.613 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.001 

-16.324 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.001 

-14.253 0.000 0.000 0.000 -0.001 0.000 0.000 0.000 0.001 

-12.383 0.000 0.000 0.001 -0.001 0.000 0.000 0.001 0.001 

-10.698 0.000 0.000 0.001 -0.001 0.000 0.000 0.001 0.002 

-9.184 0.000 0.000 0.002 -0.002 0.001 0.001 0.002 0.002 

-7.824 0.001 0.001 0.003 -0.002 0.001 0.001 0.003 0.003 

-6.604 0.001 0.001 0.004 -0.003 0.002 0.002 0.004 0.004 

-5.508 0.002 0.002 0.006 -0.004 0.004 0.004 0.006 0.006 

-4.520 0.003 0.003 0.008 -0.006 0.007 0.007 0.009 0.009 

-3.625 0.004 0.004 0.010 -0.009 0.011 0.011 0.013 0.012 

-2.807 0.006 0.005 0.011 -0.014 0.017 0.016 0.019 0.017 

-2.051 0.006 0.006 0.008 -0.022 0.026 0.025 0.028 0.023 

-1.341 0.003 0.002 0.002 -0.035 0.038 0.037 0.040 0.030 

-0.663 -0.008 -0.008 -0.009 -0.050 0.051 0.051 0.053 0.035 

0.000 -0.025 -0.024 -0.026 -0.057 0.061 0.061 0.062 0.037 

0.663 -0.035 -0.035 -0.036 -0.050 0.065 0.065 0.066 0.035 

1.341 -0.035 -0.035 -0.035 -0.035 0.062 0.063 0.063 0.030 

2.051 -0.029 -0.029 -0.030 -0.022 0.054 0.054 0.055 0.023 

2.807 -0.023 -0.023 -0.023 -0.014 0.044 0.044 0.044 0.017 

3.625 -0.017 -0.018 -0.018 -0.009 0.034 0.034 0.034 0.012 

4.520 -0.013 -0.013 -0.013 -0.006 0.025 0.025 0.025 0.009 

5.508 -0.009 -0.009 -0.009 -0.004 0.018 0.018 0.018 0.006 

6.604 -0.006 -0.006 -0.006 -0.003 0.013 0.013 0.013 0.004 

7.824 -0.004 -0.004 -0.004 -0.002 0.008 0.008 0.008 0.003 

9.184 -0.003 -0.003 -0.003 -0.002 0.005 0.005 0.005 0.002 

10.698 -0.002 -0.002 -0.002 -0.001 0.003 0.003 0.003 0.002 

12.282 -0.001 -0.001 -0.001 -0.001 0.002 0.002 0.002 0.001 

14.253 -0.000 - 0.000 -0.001 -0.001 0.001 0.001 0.001 0.001 

16.324 -0.000 -0.000 -0.000 -0.001 0.000 0.000 0.001 0.001 

18.613 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.001 

21.133 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 

constant                                       variable 
porosity                                          porosity 

Aa 

-0.0084              -0.0084           -0.0087 

-0.71°                -0.70°              -0.75° 
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Table 5.3   Corrections for the BGKl airfoil, h/c = 6, 20% perforated walls 

'^M„ Aa(deg) 

M_ aides) CL constant 
porosity 

variable 
porosity 

FFT constant 
porosity 

variable 
porosity 

FFT 

0.758 -3.63 -0.21 -0.001 -0.001 -0.001 0.29 0.25 0.15 

0.758 -0.38 0.28 -0.002 -0.003 -0.003 -0.48 -0.48 -0.55 

0.758 1.50 0.58 -0.008 -0.008 -0.008 -0.72 -0.76 -0.83 

0.758 2.55 0.75 -0.011 -0.011 -0.012 -0.88 -0.93 -1.01 

0.758 3.58 0.90 -0.014 -0.014 -0.014 -0.99 -1.06 -1.15 

0.758 4.60 0.94 -0.014 -0.015 -0.015 -1.03 -1.09 -1.18 

O  Z„+3i 

O  Z„+2i 

O ZQ"*" 

2 • z 

i X 
2 

O Zo" ' 

O Zo-2i 

Fig. 5.1    Sequence of images of Zg 
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U.IU 

A     UPPER    WALL 

V     LOWER   WALL 

-0.05 
    THEORETICAL,   P^ = 1.53 , P = 0.54 

^ 

'^E^ 
A 

^ A A A A   A   ^ 

Cp 0.00 ■    A      .                                                                           ^ 

'      «     0^"V>-^^^^ V   V 

vV Z-^"^^^ 

0.05 
•  . 

AIR FOIL 

7 

0.10 1                           1                          1 LJ„ ' ,                         , 
-8.0 -6.0 -4.0 -2.0 0.0 

x/c 
2.0 4.0 

Fig. 5.2    Experimental and theoretical wall pressure distributions, M„  = 0.758, C^, =0.58, 
CMC,4 = -0-116, CD  = 0.0085,h/c = 6, 20% perforated waUs 
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6.0   WALL INTERFERENCE CORRECTIONS FROM BOUNDARY MEASUREMENTS 

6.1   Early Blockage Corrections for Solid Walls 

To utilize wall pressures for the evaluation of wall interference corrections was proposed by Franke and Weinig [6.1], 
Goethert [6.2], Tiiom [6.3], Mair and Gamble [6.4] and possibly by others; for a brief description see also References [6.5] and 
[6.6]. The development of the method was motivated by observations that the determination of solid wall corrections from the 
classical solid wall theory became unreliable at high speeds and incidences, mainly due to uncertainties in the determination of singular- 
ity strengths, representing the far field of model. The use of measured wall pressure data made the estimation of singularity strengths 
unnecessary. 

The method is reviewed here using the theoretical results of Chapter 5. We assume that the airfoil is located on the tunnel 
axis and that the static pressures are measured along both tunnel walls, y = ± h/2. The asymmetry effect of the lift and pitching moment 
is eliminated by taking the mean of the upper and lower wall readings, at each streamwise station x. 

Introducing the disturbance velocity 

u(x,y) = ^ Re [Wp (Z) + Ww (Z)] 

we obtain, upon substituting Z = X ± i/2, ZQ = 0 and Ty = TL = 0 into Equations (5.5), (5.19), (5.20) and (5.25), the following formula 

/   h\       /      h 
u(x,—   + ulx,— 

P^h l + e^"^    P^h^ {1 + e^'^)^ 
(6.1) 

where 

(3h 
(6.2) 

is the reduced streamwise co-ordinate. Alternatively, Equation (6.1) can be vsrritten as 

u(x, -| + u (x, - -)   = —^ [1 + tanh (TTX)] + —^ sech^ (;rX) 
\    2/       V       2/J      2/32 h 2^3 h2 

(6.3) 

which for the case |3 = 0 was earlier given by Rogers [6.6] on basis of Goldstein's theory [6.7]. 

Substituting x = 0, we obtain 

"f-i)^"f-i) la      1    1X1! 

2   fl^h     2   fl3h2 
(6.4) 

Comparing this with the velocity correction (4.98), we see that the mean velocity increment at the wall locations opposite the airfoil is 
equal to the velocity correction due to the wake blockage plus three times the velocity correction due to the solid blockage, at the 
position of the airfoil. This simple rule was discovered and experimentally verified by Thom [6.3]. 

In the absence of wake blockage, a = 0, we obtain by comparing Equations (4.98) and (6.1) the correction formula of Franke 
and Weinig [6.1] 

"w (0.0) = - u(o,j).u(o,- (6.5) 

If a =7^ 0, additional pressure points have to be provided. Mair and Gamble [6.4] utilize for this purpose the infinitely distant point 
downstream. Taking the limit x -> °°, we obtain from Equation (6.1) 

Ujoo, —1 -^ ui°o, ' 
o 

(6.6) 

which shows that the velocity increment far downstream is twice the velocity correction at the airfoil position due to wake blockage. 
Substituting Equations (6.5) and (6.6) in (4.98), we obtain the velocity corrections 

"w (0.0) =  g K^'S'^f'-S'^l^^'^f'-i) (6.7) 

This formula is applicable only if the downstream measurement is performed far enough from the model, where a constant pressure 
level is attained, see Figure 6.1. 
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Of course, it is not difficult to generalize the above procedure to the case of two finite wall locations, which is more relevant 
in practice. Since we measure pressures, it is also convenient to work directly with the (linearized) pressure coefficient 

C. (x,y)  = - 2 u (x,y) (6.8) 

and rewrite Equation (6.1) as 

a UTT 1 
a (x)  + b (x) -^-— = - - 

|32h (33h2 2 
Cp(4)-Cp(x,-0 (6.9) 

where 

i(x) = 2 
1 +e^ 

(6.10) 

b(x) = 4 

Knowing the static pressures at x = Xj and x = Xj, see Figure 6.2, we set up two linear equations from which the expressions 

(6.11) 

0                   iiir 
      and       

can be evaluated. Substituting in Equations (4.98) and (4.100), we obtain the required velocity and velocity gradient corrections. 

As mentioned at the beginning, this correction does not require the knowledge of the singularity strengths a and JLI. This 
makes it extremely attractive for correcting wind tunnel tests of bluff bodies and airfoils at high incidence, where the direct deter- 
mination of a and ju from Equations (4.19) and (4.21) is uncertain because of the presence of flow separation. For example, 
separation bubbles increase the airfoil cross-section that is hard to estimate [6.8], [6.9], unless the flow is visualized. Further 
information on blockage corrections for bluff bodies in solid wall test sections can be found in Reference [6.10]. 

In principle, there are no difficulties in extending the analysis to the asymmetric part of the pressure disturbance 

(4- X,  

Using wall pressures at two stream wise stations Xj and Xj, we can analogously set up two linear equations in 

and 
iS^h^ 

and evaluate the incidence and streamline curvature corrections from Equations (4.99) and (4.101). We are not going into details, since 
the method is superseded by that of Section 6.5, where the entire wall pressure distributions can be taken into account. 

6.2   Method of Capelier, Chevallier and Bouniol 

This method utilizes the measured boundary pressures differently from that of Section 6.1. In what we have seen so far, 
it was always the wall boundary condition that was supposed to be known; the novelty of the approach of Capelier, Chevallier and 
Bouniol [6.11] is that the measured pressures are directly taken as the boundary values so that the cross-flow properties of the walls 
do not enter the picture at all. This makes the method particularly suited for the evaluation of wall corrections in test sections with 
ventilated walls, whose cross-flow properties, as we have seen in Chapter 2, are extremely difficult to model mathematically. However, 
as in the classical wall interference concept, the far field representation of the model by singularities is still required. 

The idea of the method is very simple, resting again upon the existance of the linearized flow at the walls and the concept 
of splitting the disturbance velocity potential into the free air and waU interference parts. Equation (4.3). The flow is investigated in 
the infinite strip - oo < x < oo, yj < y < y2, where the wall interference potential is supposed to satisfy Equation (4.5). The lines 
y = yi < 0 and y = y2 > 0, see Figure 6.3, along which the static pressures are measured and which bound the analyzed tunnel flow 
region, are sometimes called the interfaces. Usually, they are placed some distance from the walls (inside the test section), in order to 
avoid wall viscous effects and smooth out discrete disturbances caused by the open and closed portions of the walls. In this regard 
the reasoning is very similar to that in Chapter 2, which lead to the introduction of the mean boundary condition concept. 

Along the boundaries y = yi and y = y2, where the flow is assumed to be linearized, the pressure coefficient can be expressed 

2 ~ (x,y) 
ox 

■7— (x,y) + -T— (x,y) 
ox ox 

(6.12) 



For the x component of the wall interference velocity 
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"w (x.y) = ^— (x,y) ox (6.13) 

we can set up from Equations (4.5) and (6.12) the foUowing Dirichlet problem, see Figure 6.4 

d^u, a2u„ W "   "W 

—- (x,y) + (x,y) = 0,       - ~ < X < oo,       yi < y < yj 
bx? 3y^ 

(6.14) 

UW (X,yi)   =   fl (X) , - oo < X  < oo 

"w (x,y2) = ^2 (x)        ,       - °° < X < °° (6.15) 

The boundary values 

fiW = -2*^p(^'yi>-"^(^>yi) 

1 90F 
f2(x)  = --Cp(x,y2)-—(x,y2) (6.16) 

are obtained from measured static pressiares* and by substitution for 0p from Equation (4.14) or (4.25). 

The Fourier transform solution of the above Dirichlet problem is [6.12] 

1    / y" yA 
Uw (x,y)  =  sin ITT 1 
*^  '^'      2/3h       \      h    / 

OO 

/ 

h (f) df 

-OO   cosh ITT—-—l+coslw 1    _<»   cosh Ijr l-coslvr  
\/3h/ \h/ \/3h/ \h/ 

OO 

/ 

h (S) dj 

where 

(6.17) 

h = y2 - Yi (6.18) 

is the distance between the boundaries. 

To find the y component of the interference velocity 

vw(x,y) = T—(x,y) 
3y 

(6.19) 

we use the condition of irrotationality 

3vu JUw 
^(x,y) = —(x,y) (6.20) 

Thus 

vw (x,y) 
r  duw 

,y) dx + C 

where C is an arbitrary constant. It can be determined from the condition 

*If along the interface lines the flow angles were measured instead, an identical Dirichlet problem could be set up for the y component of interference 
velocity, v^. However, since u„ and v„ are interdependent (they obey the flow irrotationality condition), a simultaneous specification of both boundary 
value problems might lead to contradiction. In the case that both static pressures and flow angles are avaUable, it is recommended to use the method 
described in Section 6.5. 
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lim       v^ {x,y) = v„ (6.21) 

where v^ is the flow angle (in radians) far upstream*, known from empty tunnel calibrations. Ideally, v„ = 0. 

We have no difficulties in verifying that the solution satisfying Equations (6.20) and (6.21) is [6.13] 

vw (x,y) = v_ + — 

CX) 

/ 

X- t 

/3h + cos (•^) 

cosh 
(•1=^) + cos I IT 

y- Vi 
h (f) d? 

X - { 

cx> 

/ 
(•^) 

/ x-i\      / y-yi\ 
cosh     IT     - cos  ITT I 

V    /3h / V      h    / 

fi ({) dj (6.22) 

Using Equations (6.13) and (6.15) it can be shown that 

lim 

oo 

vw(x,y) = v„+^     I    [f2(?)-fl(?)]d| 

v« + - [*w(^.yi) - 'h (^>yi)] 

except for open jet boundaries in which case 0^ is nonvanishing far dovmstream, see Equation (4.50), and 

lim   Vw (x,y) = v„ - - Cj, 
x-> ~ n 

In Reference [6.11]  the conjugate functions u^^, and V\^, are obtained in one operation using analytic functions. The 
corresponding Schwarz problem [6.14] ** is solved by mapping the infinite strip onto the (upper) half plane and invoking the Cauchy 
integral formula. The result is also known as Palatini's formula [6.15]. 

Assuming the airfoil midway between the boundaries, i.e. 

yi = - yi 

we obtain from Equations (6.17) and (6.22) the following corrections at the airfoil position 

f2«) + fl(f) 
uw (0,0) 2;3h     J 

cosh (I) 
dj (6.23) 

Vw (0,0) = v„ + 
1     r   k («) - h (?) 
h       I /27rA d? (6.24) 

♦The subscript -<» would be more appropriate. 

**The problem of determining an analytic function inside a domain from its defined real part on the boundary. The real part is determined uniquely, the 
imaginary part to within an arbitrary constant. 
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(0,0) = ——        rTr^'"'^u:n^ (^-^s) 

OO 

-(0,0) =    —— d{ (6.26) 

The corrections to measured stream and model quantities are then evaluated using the standard procedures as described in Section 3.7. 

As discussed in Reference [6.11], the application of the above correction formulas requires in principle the knowledge of 
the pressure distributions along the boundaries y = ± h/2, from upstream infinity to downstream infinity. Fortunately, the presence 
of cosh in the denominators of expressions (6.23), (6.25) and (6.26) makes the weight of fj and f2 diminish rapidly as | J | increases. 
The same does not apply to the incidence correction (6.24): the respective denominator tends to unity as J ^- -°° and it is thus 
required to provide the pressure data up to the point where the difference f2 - fj is negligibly small. In fact, numerical experimentation 
[6.16] with actual tunnel data indicates that the incidence correction is quite sensitive to contributions far upstream. Since the length 
available for measuring wall pressures is quite often insufficient, a simple extrapolation based on the exponential decay of fj and ^2 
proves to be helpful, at least in a sense that the integral (6.24) exists and that the residual error is systematic from one tunnel test to 
another. On the downstream end, fj and 
crucial there, but it should be kept in mind that the zero circulation condition 

f [h ii) - fi a)] d? 

has to be satisfied if the flow is expected to be parallel to the tunnel axis far upstream and downstream. Other helpful suggestions 
concerning the truncation of wall pressure signatures were made by Vaucheret [6.19]. 

As pointed out in References [6.11] and [6.13], one of the most attractive features of the method is that the velocity 
(Mach number) correction compensates automatically for small errors of the reference velocity (Mach number). We shall call it 
the autocorrection property. To illustrate its principle, we denote by the symbol 8 the perturbations (errors) of pertinent stream 
quantities. Starting with the perturbation 5p„ of the reference pressure p„, we obtain the perturbation of any pressure coefficient 
Cp based on p„ as 

«Cp  = J 
5p„ 

i"""- 

The perturbation of the boundary values (6.16) is then 

6fi (x) = 6f2(x) = - —5Cp  = constant 

and since any constant is a solution of Equation (6.14), we obtain, without the need of actual evaluating Equation (6.17), the pertur- 
bation of the velocity correction 

6Auw(x,y) = --5Cp 

The relative perturbation of the reference stream velocity U„, evaluated from p„, is however exactly opposite: 

«U„ ^        6p^ ^ 

Using Equation (4.128), the corrected stream velocity at the model position is then 

(U^ + 6U„) [1 + uw (0,0) + 5uw (0,0)]  =^ U„ [1 + uw (0,0)] 

i.e. to^the first approximation independent of 6p_ For incompressible flow, the autocorrection property applies exactly, see Paquet 
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Considering the total amount of work that went into the ventilated wall research during the last thrity years, it is quite 
amazing that a method as basic and powerful as this had to wait for its discovery until 1977: all the necessary experimental and theo- 
retical tools had been available for a while. Then, it is perhaps no coincidence that the right time came with the advent of the self- 
correcting wind tunnel, when the importance of the boundary pressure measurements became newly appreciated and the problem of 
wall interference was given another perspective. 

In conclusion we also mention that the boundary value problem described by Equations (6.14) and (6.15) can also be solved 
numerically, for example by the panel method [6.17], finite difference or finite element techniques. This may be convenient if it is 
required to calculate the whole interference velocity field and not just the corrections at the model position. Also, the numerical 
methods are applicable to more complex test section geometries or combinations of pressure and normal velocity boundary conditions. 
In the latter case, which is appropriate to the solid waU wind tunnel with a finite-length ventilated test section [6.17], care must be 
taken since we are no longer on the safe ground of the Dirichlet, respectively the Schwarz boundary value problem. The mixed 
boundary value problem of the Keldysh-Sedov type has a solution only when u^ and v^ are permitted to be unbounded at the solid 
wall edges. A unique solution exists if Kutta-like conditions are satisfied at either the upstream or downstream solid wall edges [6.18]. 

6.3   Method of Mokry and Ohman 

This method, described in detail in Reference [6.20] and also independently proposed in Reference [6.13], is a variant of the 
wall correction method discussed in Section 6.2. Instead of using the infinite strip solution, the problem is formulated for a rectangle 
Xi < X < X2, yi < y < y2, see Figure 6.7, which is more appropriate to testing in actual, finite-length test sections. The method 
is again of the "Schwarz type", indicating that by using the measured wall pressures the velocity correction is determined uniquely, 
whereas the flow angle correction is obtained only to within an arbitrary constant. Regarding the autoconvergence of the velocity 
correction, the same remains valid as in Section 6.2. 

Following Reference [6.20], we first employ the transformation 

i 
(6.27) 

that reduces Equation (4.5) to the Laplace equation and the investigated flow region to the rectangle 0<J<a, 0<T?<b, where 

(6.28) 

b = y2 - yi 

are the sides of the transformed rectangle. 

For the transformed x component of interference velocity 

30W 
"w (?.^) = ^r (x,y) = |3 uw (x,y) (6.29) 

we can set up the following Dirichlet problem 

3^uw S'^S^ 
 (I.T?) + ii,v) = 0, 0<J<a, 0<7?<b 
sj2 a^2 (6.30) 

Sw(J,0) = f<i)(?), 

Sw (f ,b) = f<2' ({), 

5w (0,r?) = g"' (V), 

Uw(a.'?) = S^^Hv), 

0 < J < a 

0 < I < a 

0 < 7) < b 

0 < 7j < b 

(6.31) 

as illustrated in Figure 6.8. The boundary values 

f<l)(J) = -^ 
1 0?>F 

f<2)(f) = -/3 
d0p 

>y2) + "^(x,y2) ox i^''^"'^^'-  3x (6.32) 
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are obtained from measured static pressures along the rectangle sides y = yj and y = y2 and by substituting for 0p from Equation (4.14). 
Since it is impractical to measure pressures across the stream, the remaining boundary values are obtained by linear interpolation of the 
comer values: 

n.              \j,^           f<^'(0) - f<l'(0) g(i)(j,) = f(i)(0)+ ^-!- i-!,, 

n^            ^,^          f'^'(a) - f(l'(a) gC2)(j,) = f<l)(a)+ '-^^ ^1, 

(6.33) 

Using the method of separation of variables, the solution of the boundary value problem specified by Equations (6.30) and 
(6.31) is found to be [6.21] 

Sw(S.'?) = 7 j 
k = l 

sinh fi^ (b - r?) sinh /n,, n 
AF^ + AP) 

sinh iXy. h sinh n^^ b sinMk i 

CO _ 

E 
k = l 

sinh!.^(a-J) sinhf^J 
B»> +BP> 

sinh v^^ a sinh i'^ a 
smfj; 7J (6.34) 

where the eigenvalues are 

kTT 
'^k 

"k = 
kTT 

(6.35) 

The series coefficients are given by the integrals 

A^' = -   r  f< ^(^sinMkfdJ 

(6.36) 

^( ) |. (T)) sin v^ Tf d7j 

where the empty superscript (  ) stands either for (1) or (2). 

The above solution is uniformly convergent within the rectangle except near the corners, where it would have to be modified 
[6.22]. For a model located near the test section centre. Equation (6.34) can be approximated by a truncated series. This can be 
accomplished by using the following procedure: defining the odd extensions of the boundary functions f^ 'on the interval 0 < ^ < 2a 
and dividing 2a into m equal length intervals, see Figure 6.9, the coefficients A[ ' can be approximated according to the rectangular 
rule as 

m-1 
27rjk 

j = 0 

(6.37) 

m-1 

A<^) = ^y  f(^)(a^sin^ 
^ m Z_^ \      m   / m 

i = o 

If m is selected as an integer power of 2, the above sums can be efficiently calculated by the fast Fourier transform algorithm for the 
indices k = 1, 2, . . . , m/2 - 1. Accordingly, the upper limit of the first series of (6.34) has to be m/2 - 1. 

The evaluation of the coefficients B^ ' is even simpler; using Equations (6.33) we obtain their closed form integrals 



B(i) = j^[f(i)(0)-(-l)''f<2'(0)] 

BO) = ^[f<l)(a)-(-l)>'fO)(a)] 

(6.38) 

Using Equations (6.27) and (6.29), the velocity correction at tiie model position x = y = 0 is obtained as 

uw (0,0) -r-{-j'-') (6.39) 

In order to express the incidence correction 

vw (0,0) = -- (0,0) 
3y 

we form the total differential of d<t>^/dy and integrate it along the path Xj^f, Vj^j -» 0, y^f ^ 0,0, where Xj^j, y^^j is a selected interior 
point of the rectangle, inside the linearized flow region, see Figure 6.7. The integration gives 

— (0,0)-—(x„,y,,,) 
/   ^1 \ /Xief-Xi \ 

where v^ is the conjugate velocity function 

oo 

k = l 

cosh fly. (b - Tj) cosh Hy- T) 

Al') ■ AP' 
^        sinh /x^ b ''     sinh jXy. b 

cos Mk ? 

E 
k = l 

cosh Vu (a - f) cosh Vy. i 

'' sinh t'^ a ''     sinh Vy. a 
cos i'lj r; (6.40) 

Using Equation (4.3) we can further split 

3^ d(t>p 

where 

g    " (Xref. Yiet)  =   ^ (^ref. yref) " "^ (^rrf. Yief) 

30 
» (Xref, yref)  =  ^ (^ref, yref) 

is the flow angle (in radians) at the reference station. 

Consequently 

/   Xi \ /Xref-Xi \ 30P 
Vw (0,0) = Vw I - y, - yi 1 - Vw I—T , y,ef -yij +6 (Xj^f, y^f) - "^ (xref, yief) (6.41) 

The first two right hand terms are evaluated from Equation (6.40) and the last term from Equation (4.14). The only unknown term 
in Equation (6.41) is the flow angle 6, which has to be measured (yawmeter, laser velocimeter) or estimated by other means. If the 
distance | Xj | between the airfoil and the upstream side of the rectangle is sufficiently large and the pressure measurements show that 

Cp(xi,yi)  =:  Cp(xi,y2)  ^  0 .   , 

we may assume that the flow at the entrance to the test section is practically undisturbed, select 
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x,,f = xi       ,       y,ef =0 • (6.42) 

and take 

e (xi,0) = 0 (6.43) 

or, more exactly, set the flow angle equal to the value known from empty tunnel calibration. 

Using Equation (6.29), we similarly obtain the velocity gradient correction 

3uw 1   32^  /  xi \ 

and the streamline curvature correction 

dvw ;L  duw /   xi \ 

These corrections are evaluated by summing the differentiated series (6.34); the coefficients A^ ' and B^ ^ remain of course the same as 
before. 

6.4   Method of Paquet 

In this method the wall interference corrections are derived from the boundary pressure measurements, utilizing the solution 
of the Schwarz problem for a semi-infinite strip. Figures 6.5 and 6.6. It may well be the best combination of the two above methods, 
since the flow angle reference point can be put comfortably far upstream and yet the uncertainty of the dovsmstream extrapolation 
avoided by performing the measurement (or interpolation) across the stream at a finite distance behand the model. The acquisition of 
boundary values for the three methods, treated collectively in Paquet's thesis [6.13], is shown schematically in Figure 6.10. 

In the co-ordinate system of Figures 6.5 and 6.6, the Dirichlet part of the problem to be solved is 

a^uw a^uw h h 
P    (x,y) + (x,y) = 0,        -°o<x<£,        - - < y < - (6.46) 

dx2 dy2 2 2. 

"w (x, - -j   =  fi (X oo   <   X   <   g 

Uw   X,-        =f2(x),        -°°<x<e (6.47) 

h h 
uw (K, y)       = g (y),        " 2" ^ ^ "^ 2" 

where, in accordance with Equations (6.16) 

1       /       h\    <^'PF/       h\ 
Mx) = --C,(x,--)--(x,--) 

1       /    h\    3*F /    h\ 
f,(x) = --C,^x,-j--^x,-j (6.48) 

1 30F 
g(y)   = --Cp(K,y)-—(8,y) 

Mapping conformally the semi-infinite strip onto the upper half plane and employing the Poisson formula, Paquet [6.13] 
obtained for y = 0 the solution 

/ h 

sinh^r^l      '      [f2(^)^fim]sinh(^^) r g(.)c°s(:r^) 
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and the conjugate solution 

h 

1     ,     /     [f2 (f) - fi ii)] sinh L ^] 2 g ^^j ^.^ / ^ ^ 
V„ (X,0)   =   —     (  ; ^ !^ ^ ^   df + 8 /       ^^  

+ sin^ ITT — 
h 

dJ? }  + v„ (6.50) 

The velocity gradient and streamline curvature corrections are obtained by differentiating Equations (6.49) and (6.50) with respect to x. 
Equations (6.23) to (6.26) are recovered by putting x = 0 and taking the limit i ^ °°. 

6.5   Method of AshUl and Weeks 

The specification of the singularity strengths representing the far field of the airfoil becomes unnecessary if both the pressure 
and flow angle distributions are known along the test section boundary.* Wall corrections can then be calculated directly from these 
wall quantities, without knowing anything about the crossflow properties of the walls and the flow in the neighbourhood of the 
model [6.23]. Near the model the flow can be separated, supercritical, etc., but near the tunnel walls it is assumed to be attached and 
subcritical. 

AshUl and Weeks were among the first researchers who fully realized the great potential of this approach, deriving the general 
correction formula first from Green's theorem [6.24] and then, more concisely, from Cauchy's integral formula [6.25]. The idea of 
correcting the model data from measured two components of velocity at a control surface near tunnel walls was independently also 
pursued by Lo [6.26], who derived the blockage formula for symmetrical flow past an airfoil between solid tunnel walls by solving 
the linearized boundary value problem using the Fourier transform method. The more straightforward Cauchy integral (or residue) 
approach was subsequently also adopted by Smith [6.17], [6.27] and by Draft and Dahm [6.28], who pointed out the connection 
with Lo's blockage formula [6.26]. 

Using the complex variable approach, we form the complex disturbance velocity 

w(z)  = /3u(x,y)- iv(x,y) (6.51) 

in the region of subsonic linearized flow surrounding the airfoU. Here 

z = T + iy (6.52) 

is the complex co-ordinate and 

30 
u(x,y) = 7-(x,y) 

ox 

v(x,y)  = — (x,y) 
ay 

(6.53) 

are the disturbance velocity components. In accordance with the classical wall interference concept we decompose the complex disturb- 
ance velocity as 

w (z) = Wp (z) + ww (z) (6.54) 

where Wp and w^ are analytic in the test section exterior and interior respectively. Applying the Cauchy integral formula to the closed 
contour L shown in Figure 6.11, we obtain for an interior point z 

27ri   J 

Wp (?) 
df (6.55) 

L 

and 

2m  J 
Ww(f) 

*In fact, the problem would be overdetermined. 
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where 

■ IT; (6.57) 

is the complex co-ordinate of the running (dummy) point. Adding Equations (6.55) and (6.56), we obtain with the help of 
Equation (6.54) the correction formula [6.27] 

Ini  J    f - z ''*^'^ = ^     '   ^^''^ (6.58) 

The velocity and incidence corrections immediately follow as 

"w (x,y) =  — Re Ww (z) (6.59) 

vw (x,y) = - Im w^ (z) (6.60) 

and the velocity gradient and streamline ciurvature as 

3u„ dwu 
-— (x,y) =   — Re -— (z) 
ox o2 dz 

(6.61) 

3v^ 
(x,y) 

2       dwyv 
- Im (z) 
/3 dz   ^ ^ 

(6.62) 

The above correction formulas are applicable to arbitrary (simply closed) contours, including those formed by flexible test 
section walls. For two parallel interface lines at y = ±h/2, Figure 6.12, Equation (6.58) gives [6.25] 

ww(z) = -- 
iTTi     I     f       h         j3     27ri     I     ? 

__~+i~~z "^ i 
(3        2 ^       2 

h P 
z 

(6.63) 

At X = y = 0 the components of the wall interference velocity are thus 

uw(0 

(^^ 
J2 + 

■^—d? (6.64) 

Vw (0,0) 

{2 + 

■^ dj (6.65) 

The velocity gradient and streamline curvature correction can be worked out in a similar fashion from Equations (6.61) and (6.62). 

For symmetrical flow conditions 

"(-^"(^•1) 

^H-A4 
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we obtain from Equation (6.64) the velocity correction 

h 

"^2      /      " V' 2J      ^     1       r      /   h\ 

-1. f.{p-        --L        i^.i,- 
dj (6.66) 

that was first given by Lo [6.26]. 

Of course, to be able to evaluate the corrections from Equations (6.64) and (6.65), both components of the disturbance 
velocity, u and v, have to be known at the walls. Within small disturbance theory, they can be obtained from experiment as 

"(^-•i) = -^.('-l) 

'(-i) = »H) 
(6.67) 

where Cp is the pressure coefficient and Q is the flow angle (in radians). 

In the case of solid walls, to which the method of AshUl and Weeks is mainly addressed, the flow angle is essentially defined 
by the condition of no flow through the walls, and so only static pressures need be measured. To the order of accuracy of the small 
disturbance theory, the flow angles can be estimated from the wall shape adjustment (adaptive walls) and boundary layer develop- 
ment [6.29]. 

For ventilated walls, the technical problem of measuring flow angles is an obstacle to the routine application of the method. 
However, there has been a steady progress in applications of laser doppler technology [6.30] and developments of flow angle 
probes [6.31] and double orifice static pipes [6.32], which eventually will make this powerful correction technique applicable to all 
types of test sections. 

6.6   Methods of Kemp and Murman 

A rather different approach to the correction of transonic two-dimensional wind tunnel data is the one taken in the method 
by Kemp [6.33], [6.34], [6.35] and in the related method by Murman [6.36]. The method is attractive and of practical interest, 
since it does not require boundary flow angle measurements. It uses experimental pressures at the model and the walls and transonic 
computational codes to determine whether the airfoil pressure data is correctable in the sense that they can be (with a reasonable 
accuracy) reproduced computationally by an optimized search of the free air Mach number and angle of attack. 

First, an inverse problem is solved to determine the values of the normal component of velocity on the upper and lower 
surfaces, from which the effective contour S^ of the tested model can be constructed. The use of measured pressures on the model 
ensures that the boundary layer effects are included in the calculation providing the pressure gradient across the boundary layer is 
small: the effective contour contains the actual airfoil (at given geometrical incidence) augmented by the displacement area of the 
boundary layer. Boundary conditions used for the inverse problem include the measured pressure at the tunnel wall, the measured 
pressure at the model and suitable upstream and downstream boundary conditions. As demonstrated by Kemp [6.37] on the example 
of the BGK1 airfoil, shown here in Figure 6.13, a special care should be taken in establishing the flow direction far upstream. Under 
the assumption that the front portions of the effective and actual contours should coincide (the boundary layer is thin there), it is 
found that in this particular case the flow far upstream should be inclined - 0.25° with respect to the tunnel axis (v„ — - 0.005). 
The wall crossflow results earlier shown in Figure 2.16 seem to support this finding in the sense that the crossflow results for upper 
and lower walls lie on a single curve, having a smooth variation in slope. 

Next, the direct problem is solved for free air flow past the effective airfoil contour. Kemp adjusts the free stream Mach 
number to obtain at a control (match) point on the airfoil the computed pressure equal to that measured in the wind tunnel. 
Experience has shown that this control point should be selected just upstream of the shock wave. The angle of attack is subsequently 
adjusted to produce computationally the test lift coefficient, corrected for blockage (change in reference dynamic pressure). The 
difference between the obtained free air Mach number and the wind tunnel Mach number is then identified with the Mach number 
correction; a similar rule applies to the angle of attack correction. The data is considered correctable if the difference between the 
computed and measured surface pressures remains small all over the airfoil. Murman [6.36] formalizes the procedure by defining the 
error integral 

u [p(s)-p,(s)]2ds (6.68) 

where p is the measured pressure, p^ is the pressure calculated on the effective airfoil contour in free air, and q is the dynamic pressure 
for the test. The integral is taken over the actual airfoil contour S and the unconstrained minimization problem is solved to minimize E 
by varying M„ and a. Clearly, if E is zero, the measured pressure distribution corresponds exactly to the calculated stream conditions 
at the corrected Mach number and angle of attack. In practice, E will not be zero; but if it is small enough, the data will be considered 
correctable. It is indicated that the values of order 0.01 would likely be acceptable but, apparently, the concept needs to be further 
quantified on a reliable experimental sample. Since any discrepancy in shock positions produces a large value of E, the minimization 
procedure is expected to produce nearly identical shock positions for measured and computed data, which is a prerequisite for matching 
the experiment and computation. 

There appear to be several advantages to the Kemp-Murman method over previously outlined wall correction procedures. The 
method does not require the flow angle measurement along the walls and yet disposes with the far field approximation of the potential 
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of the airfoil in free air. It accounts for the nonlinearity of transonic flow and incorporates the boundary layer effect, unlike the 
majority of methods based on potential flow calculation, through the use of the effective airfoil contour. Another feature, as we have 
seen, is that the comparison of the effective and actual airfoil shape aUows to set correctly the flow angle far upstream. However, since 
it requires more computer time than other methods discussed in this Chapter, it is recommended for benchmark experiments where 
accurate results are important, or to use it as a base method to validate more approximate correction procedures which may suffice for 
routine testing [6.36]. 

6.7   Comparison of Methods on an Experimental Example 

As a test case for comparing the various correction methods based on wall pressure measurements, data were selected from an 
investigation of the BGK 1 airfoil in the NAE 15" X 60" two-dimensional test facility with 20% perforated top and bottom walls. The 
chord to tunnel height ratio was c/h = 1/6 and the airfoil was set at 2.56° incidence relative to the tunnel axis and tested at a reference 
Mach number of 0.784 and a Reynolds number of 21.03 X 10^. Based on earlier analyses, the transition point can be assumed to be 
near the leading edge at about 7% chord of the airfoil. The airfoil pressure distribution is hsted in Table 6.1 and the wall pressure 
distribution in Table 6.2. These data were submitted to various authors who kindly performed the correction calculations. The 
results of their efforts are collected in Table 6.3 in the form of evaluated corrections to Mach number and angle of attack. 

The NAE (Mokry, Ohman) and the ONERA (Capelier, Chevallier, Bouniol) methods produced identical corrections (within 
three digits of accuracy). Both methods are based on analytic solutions, utilizing the same principle, cf. Sections 6.2 and 6.3, and if the 
length over which the wall pressures are scanned is sufficiently large, the different handling of the data on the far ends (extrapolation 
versus interpolation) should not indeed matter. However, more recently Gopinath [6.16] produced with the ONERA method, supple- 
mented by an exponential fit of the pressure data, a more negative value of AM„ (- 0.017 versus - 0.015). We may mention that 
very satisfactory agreement between experiment and free air calculation was achieved using the Bauer-Garabedian-Kom Jameson 
program [6.38] and applying the AM„ = - 0.015 correction, see Figure 6.14. The free air computation, performed at the corrected 
Mach number of 0.769 and the experimental lift coefficient of 0.764, indicates the change of incidence Aa = 1.73° - 2.56° = - 0.83°, 
which is somewhat larger in amplitude than the angle of attack correction - 0.67° obtained on the assumption of zero flow angle far 
upstream. On the other hand, a need for a Mach number correction more negative than - 0.015 was called for by Melnik [6.39], who 
correlated the NAE measurement with viscous-code computations [6.40] that produce more rearward shock locations (mainly because 
of conservative differencing) than the method of Reference [6.38]. This may also serve as an illustration of the difficulties that are 
often encountered in the correlation of tunnel measurements with computations. 

The NLR (Smith) method is very similar to that of ONERA, but utilizes singularity distributions to solve the Dirichlet 
problem. It yields the same Mach number correction, but departs slightly in the angle of attack correction. However, this value is 
supported by the NAL (Sawada) method, which will be described in Chapter 7. 

The NASA (Kemp) method gives the angle of attack correction of - 0.64°, close to that obtained by the ONERA and NAE 
methods. If, however, the airfoil effective contour calculated in the tunnel flow solution is plotted and compared with the actual 
BGK 1 airfoil shape at 2.56° incidence. Figure 6.13, it appears that the correspondence between contours is improved by superimposing 
a downwash - 0.25° to the tunnel flow solution. The corresponding angle of attack correction is - 0.89°, close to that obtained 
indirectly in Figure 6.14. The Mach number correction - 0.017 obtained by Kemp's method agrees with Gopinath [6.16]. 
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Table 6.1    Test case — airfoil pressure distributions 

x/c y/c Cp 

0.69969 -0.02259 0.1344 
0.65058 -0.01049 0.0496 
0.60088 0.00174 -0.0440 
0.55143 0.01309 -0.1454 
0.50184 0.02316 -0.2454 
0.45197 0.03187 -0.3707 
0.40225 0.03923 -0.5369 
0.37239 0.04299 -0.8942 
0.35257 0.04526 -1.1343 
0.33280 0.04733 -1.1416 
0.31296 0.04922 -1.1347 
0.27317 0.05248 -1.1127 
0.25306 0.05393 -1.1120 
0.23300 0.05523 -1.1004 
0.21308 0.05641 -1.0952 
0.19296 0.05749 -1.0828 
0.17208 0.05841 -1.0691 
0.15320 0.05920 -1.0623 
0.13294 0.05991 -1.0534 
0.11296 0.06048 -1.0656 
0.09301 0.06091 -1.0476 
0.05280 0.06147 -1.0593 
0.03278 0.06155 -1.0338 
0.01276 0.06151 -1.0446 

-0.00727 0.06127 -1.0371 M„ = 0.784 
-0.02741 0.06091 -1.0378 
-0.04735 0.06039 -1.0327 a      =  2.56° 
-0.06750 0.05966 -1.0224 
-0.08736 0.05874 -1.0317 R(, = 21 X 10* 
-0.10754 0.05756 -1.0309 
-0.12757 0.05610 -1.0194 CL = 0.764 
-0.14753 0.05423 -0.9919 
-0.15738 0.05318 -0.9759 A  = 0.075 
-0.16771 0.05172 -0.9334 
-0.17764 0.05010 -0.8791 c/h = 1/6 
-0.18784 0.04810 -0.7686 
-0.19816 0.04562 -0.7074 20% perforated walls 
-0.20810 0.04280 -0.5856 
-0.21846 0.03927 -0.5275 
-0.22356 0.03725 -0.4455 Note: Origin of the co-ordinate 
-0.22866 0.03504 -0.4285 system at airfoil quarter- 
-0.23686 0.03084 -0.3585 chord point. 
-0.23892 0.02956 -0.2657 
-0.24098 0.02818 -0.2345 
-0.24307 0.02617 -0.0976 
-0.24532 0.02414 0.0821 
-0.24734 0.02027 0.3467 
-0.24975 0.01117 1.0781 
-0.24827 0.00629 1.1130 
-0.24653 0.00258 0.9789 
-0.24435 -0.00021 0.8023 
-0.24247 -0.00210 0.6979 
-0.24056 -0.00488 0.6230 
-0.23085 -0.00929 0.4226 
-0.22089 -0.01382 0.3077 
-0.20113 -0.02082 0.1443 
-0.17622 -0.02775 0.0396 
-0.15134 -0.03329 -0.0498 
-0.10156 -0.04161 -0.1415 
-0.05206 -0.04730 -0.1906 
-0.00219 -0.05124 -0.2088 
0.09725 -0.05485 -0.2049 
0.19792 -0.05327 -0.1172 
0.29859 -0.04729 -0.0072 
0.39908 -0.03739 0.1695 
0.49957 -0.02754 0.3345 
0.59926 -0.02320 0.4078 
0.69947 -0.02760 0.3795 
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Table 6.2    Test case — wall pressure distributions 

Upper wall Lower wall 

x/c y/c Cpu 
x/c y/c CPL 

-8.10 2.90 -0.0063 -8.10 -2.90 -0.0064 
-4.50 2.90 0.0034 -6.00 -2.90 0.0145 
-3.60 2.90 0.0135 -4.50 -2.90 0.0235 
-3.00 2.90 0.0200 -3.60 -2.90 0.0290 
-2.70 2.90 0.0235 -3.00 -2.90 0.0358 
-2.40 2.90 0.0191 -2.70 -2.90 0.0377 
-2.10 2.90 0.0070 -2.40 -2.90 0.0422 
-1.80 2.90 0.0156 -2.10 -2.90 0.0463 
-1.50 2.90 0.0064 -1.80 -2.90 0.0572 
-1.20 2.90 -0.0011 -1.50 -2.90 0.0553 
-1.05 2.90 0.0005 -1.35 -2.90 0.0569 
-0.90 2.90 -0.0049 -1.20 -2.90 0.0642 
-0.75 2.90 -0.0084 -1.05 -2.90 0.0732 
-0.60 2.90 -0.0128 -0.90 -2.90 0.0721 
-0.45 2.90 -0.0225 -0.75 -2.90 0.0738 
-0.30 2.90 -0.0173 -0.60 -2.90 0.0806 
-0.15 2.90 -0.0212 -0.45 -2.90 0.0782 

0.00 2.90 -0.0386 -0.30 -2.90 0.0810 
0.15 2.90 -0.0382 -0.15 -2.90 0.0842 
0.30 2.90 -0.0230 0.00 -2.90 0.0770 
0.45 2.90 -0.0277 0.15 -2.90 0.0875 
0.60 2.90 -0.0281 0.30 -2.90 0.0975 
0.75 2.90 -0.0249 0.45 -2.90 0.0954 
0.90 2.90 -0.0239 0.60 -2.90 0.0902 
1.05 2.90 -0.0246 0.75 -2.90 0.0900 
1.20 2.90 -0.0263 0.90 -2.90 0.0935 
1.35 2.90 -0.0239 1.05 -2.90 0.0949 
1.50 2.90 -0.0299 1.20 -2.90 0.0938 
1.80 2.90 -0.0228 1.35 -2.90 0.0917 
2.10 2.90 -0.0274 1.50 -2.90 0.0905 
2.40 2.90 -0.0262 1.80 -2.90 0.0826 
2.70 2.90 -0.0232 2.10 -2.90 0.0797 
3.00 2.90 -0.0190 2.40 -2.90 0.0813 
3.30 2.90 -0.0196 2.70 -2.90 0.0688 
3.60 2.90 -0.0179 3.00 -2.90 0.0641 
3.90 2.90 -0.0172 3.30 -2.90 0.0591 
4.50 2.90 -0.0221 3.60 -2.90 0.0430 

3.90 -2.90 0.0396 
4.50 -2.90 0.0257 

Table 6.3    Corrections for the NAE test case obtained by several methods 

Method Ref. AM„ Aa 

NAE 
Mokry, Ohman [6.20] -0.015 -0.67° 

ONERA 
Capelier, Chevallier, Bouniol [6.11] -0.015 -0.67° 

NASA 
Gopinath [6.16] -0.017 -0.67° 

NLR 
Smith [6.17] -0.015 -0.59° 

NAL 
Sawada [7.5], [7.16]   -0.58° 

NASA 
Kemp 

[6.34] -0.017 
-0.64° 
-0.89°* 

with adjustment of upstream flow angle 
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Fig. 6.1    Velocity increment at tunnel wall due to a NACA 0015 airfoil, 
a. = 0°,   Re = 3.4 X 10*,   c/h = 0.3125 

(adapted from Ref. [6.4]) 
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Fig. 6.3    Co-ordinate system for the infinite-length test section 
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Fig. 6.4    Dirichlet problem in the infinite strip 
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Fig. 6.5    Co-ordinate system for the semi-infinite-length test section 
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Fig. 6.7    Co-ordinate system for the finite-length test section 
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Fig. 6.8    Diiicblet problem in tlie rectangle 
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Fig. 6.9    Calculation of coefficients A^^' 
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Fig. 6.10    Acquisition of boundary static pressures 
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Fig. 6.11    Lineaiized flow regions 
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Fig. 6.12    Green's r^ons for the empty test section 
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Fig. 6.13    Actual and effective airfoil contours, BGK 1 airfoil, M„ = 0.784, a = 2.56°, c/h = 1/6, 20% wall porosity 
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Fig. 6.14    Comparison of the pressure distribution on the BGK 1 airfoil measured in the 
wind tunnel with the computed ones in free air: effect of AM = -0.015 
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7.0 INTEGRAL EQUATION FORMULATION OF SUBCRITICAL WALL INTERFERENCE 

7.1 Green's Theorem for the Tunnel Flow Region 

The present Chapter deals with the application of Green's theorem to the tunnel wall interference problem at subcritical 
flow conditions at the walls. It provides a partial justification for the heuristic approach to subsonic wall interference, discussed in 
Chapters 4 and 5. The formulation is also applicable to transonic, supersonic and unsteady flows, but the strategy of evaluating the 
corrections has not been fully worked out yet. 

In general, the application of an appropriate Green's function leads to a singular integral equation of the Glauert or 
Oswatitsch type [7.1], with a kernel storing the information about the constraining effect of the particular wall. The wall interference 
corrections are obtained indirectly, by comparing the computed pressure distributions in the wind tunnel and free air. The advantage 
of the integral equation method is that it requires an order of magnitude less computing than equivalent two-dimensional numerical 
methods (finite difference, finite volume, etc.). However, for steady linearized flows, where wall corrections can be obtained by direct 
methods, the integral equation method is not the most attractive practical alternative, particularly since it works with theoretical 
inviscid, not the actual loadings. This probably explains why the Green's function approach has not been as widely used in wall inter- 
ference, as its prominence in methods of mathematical physics would suggest. Recently, this has been improving, particularly since it 
has been realized that "short cuts" are possible and that wall interference corrections can be obtained explicitly from airfoil geometry 
and measured loadings, as in the classical approach. Of course, then the result is not drastically different from that established in the 
preceding chapters. 

The small disturbance potential equation appropriate to transonic flow is [7.2] 

3x2       gy2 

K + l 30 3^0 
M^  

" u„ ax 3x2 
(7.1) 

where 

p-W: i-ut 

is the Prandtl-Glauert scaling factor and K is the ratio of specific heats (1.4 for air). 

For a thin airfoil, x^ < x < Xj, y = 0, between two parallel walls, y = - h/2 and y = h/2, see Figure 7.1, the potential 
equation is applicable to the region - oo < x < «>, - h/2 < y < h/2, from which the line segment x > x^, y = 0 is cut out. The 
potential 0 is discontinuous across x > XL, y = 0, but its derivatives are continuous across x > x-p, y = 0. Other discontinuities to 
be considered are the shock waves, represented here for simplicity by a single, normal shock wave along the line segment x = xg, 
0 < y < ys < h/2. 

The thin airfoil boundary conditions are 

30 df+(x) 
-^(x,0+) = —^,       XL <X<XT 
3y dx 

30 df-(x) 
— (x, 0-) =  —^, 
3y dx 

where 

y = f^(x) 

y = f-(x) 

describe the upper and lower sides of the airfoil contour. 

From Equation (7.1), written in the divergence (conservative) form 

(7.2) 

3 

3^ 3x       "   U„    2 \3xy . 9y .3y. 

it becomes evident that potential flow theory permits the following jump condition along our shock wave: 

3x       "   U„    2\ax/ 
= 0,       0 < y < ys (7.3) 

The tangential derivative, 30/3y, is continuous across the shock. 
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The Green's function 

G = G(x,y;?,r)) 

associated with the left-hand operator of Equation (7.1), satisfies the equation 

, a^G    a^G h h 
f—- +  = 6(x-J)6(y-T?),       -oo<x<=o,       --<y< 

9x2     9y2 2 2 
(7.4) 

where 5 is the Dirac delta function; x,y is the "fixed" point and J,;j is the "running" point. The boundary conditions for G are as yet 
unspecified. 

Applying Green's theorem to the tunnel flow region shown in Figure 7.2(a), we are able to write the formal solution to 
Equation (7.1) as 

(l> (x,y) = lA (x,y) + I* (x,y) + I^ (x,y) (7.5) 

where the contributions are: 

airfoil integral 

lA (x,y) = - 

OO 

/I 3G d<p 
*(?,r)) —(x,y;?,rj)^ ^{i,V) G(x,y;lv)\ dJ 

r;  = 0 + 

17 =  0- 
(7.6) 

wall integral 

I* (x,y) 

OO 

aG 30 
0(?,'?) —(x,y;J,7?)- r^(i,r))G(x,y;i,77)    d{ 

Jv 

(7.7) 

domain integral 

lD(x,y) = -(32 

Vs 

/ 
(?,7j)G(x,y;?,r))d7j 

i-< 

J = xr 

, K+i  /T 1 3 /30    y 

D' 

(7.8) 

where D  denotes the continuous-flow domain, i.e. the tunnel flow region, from which the line segments representing the airfoil and 
the shock are taken out. Figure 7.2(a). The inclusion of the line segment x > Xj, y = 0 is of no consequence for the double integral, 
because the integrand is continuous across. 

Since 

i({, O+)-0(J,O-) = r = constant,       Xj < J < °o 

30   ^ 30 
/(?,0+)-r^(f,0-) = 0 
3T? orj , XT   <  J  < 

we obtain 

I'^ (x,y) n .     3G 30 
* (f,T)) — (x,y;S,n) - ^ (?,7?) G (x,y ;{,ij)} d| 

7J   =   0 + 

7J   =   0- 

DO 

/ 

3G 
r     I     — (x,y;J,0)df (7.9) 

i.e. the discontinuity of 0 needs to be integrated only along the airfoil, x^ < x < x^. This form of the airfoil integral is used for 
example in References [7.3] and [7.4]. 

Another possibility is to introduce the conjugate function [7.5] 
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G*(x,y;J,7}) 

OO 

/ 
9G 

(x,y;S,n)d? (7.10) 

Integration of Equation (7.6) by parts then yields 

I* (X j)  = 

"1 

/ 
3* 3(4 
— (?,T?) G* (x,y;LT?) + -- (f,T?) G (x,y ;f,i))} d? 

7j = 0+ 

T?   =   0- 

(7.11) 

For the wall integral (7.7) similarly 

I* (x,y) = /I 30 b<t> 
— (f ,T;) G* (x,y ;f ,T?) + ~ (J,7?) G (x,y; J,TJ) \ d{ 

n = — 
2 

" = "¥ 

(7.12) 

The domain integral (7.8), consisting of the line integral along the shock wave and the double integral over the continuous- 
flow domain D', can also be simplified by integrating the latter by parts with respect to J. The integral along the shock drops out due to 
the shock jump condition (7.3), leaving us with 

n T   K + 1     CC1 lh<i>        \2 3G 
II'(x,y) = - M^ -^   JJ _/_^(j_^)j   — (x,y;{,r))djd7, (7.13) 

where D denotes the complete flow domain, i.e. the tunnel flow domain from which only the line segment representing the airfoil 
is removed, Figure 7.2(b). The fact that the field integral (7.13) contains the shock jump relations and that the shock waves do not 
have to be treated as additional cuts in the flow plane is one of the most admirable aspects of the integral formulation of potential 
flow past airfoils. The result, which is also transferable to oblique and curved shock waves, is due to Oswatitsch [7.6]; the present 
exposition, based on the divergence properties of the transonic equation, is similar to Cole [7.7], [7.8]. It need not be emphasized that 
Equation [7.13] is valid only for weak (isentropic) shocks, permitted by potential flow theory. On the other hand, sometimes it may 
be advantageous to retain the integration domain D', using a proper fitting of the shock waves [7.9]. 

To summarize the above, the potential 0 at an arbitrary field point x,y can be expressed in terms of line integrals of 30/9 J 
and 30/3?} over the airfoil and walls, plus a double integral of (30/3J)^ over the entire flow field. 

For the free air case, whose quantities wiU again be denoted by subscript F, the wall integral (7.12) can be dropped, provided 
that the Green's function satisfies the far field condition 

9x '   3y 

The formal solution for the free air potential is 

-* 0       as       r = \/(x-J)2 + 13^ (y-r))^ ^ °° (7.14) 

^P (x,y) = I^ (x,y) + 1° (x,y) (■7.15) 

where 

I^ (x,y) 

1 

/ 

|90P ^ 30p I 
— (?,n) Gp (x,y ;|,r,) + — ({,T?) Gp (x,y ;|,17) \ dj 

rj = 0+ 

rj = 0- 

(7.16) 

and 

1° (x,y) = - M^ 
K + l     /ri/a*F        \2 3Gp 

(7.17) 

where Dp is the infinite flow domain. 

The Green's function Gp, satisfying Equations (7.4) and (7.14), is obtained by a scale transformation from the fundamental 
solution of Laplace's equation: 
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Gp   =   — 10gV(x-t)2+^2(y-.^)2 (7.18) 

In mathematics Gp is called the free space Green's function or the Green's function for the entire plane; in physics it is known as 
the potential at x,y due to a unit source located at {,T?. The derivatives dGp/af and 3Gp/3i7 are the potentials due to unit doublets 
(dipoles), oriented in the directions parallel and normal to the flow respectively. 

The corresponding conjugate function 

.   _      1 |3(y-T?) 
Gp  - --atan^-^ ^^^^^^ 

is recognized as the potential at x,y due to a unit vortex at |,r?. In accordance with Equation (7.10), G* is required to vanish as J ^ «>. 

Physically, the integral (7.16) represents a line distribution of vortices and sources and the integral (7.17) the area distribution 
of doublets. SimUar interpretation of integrals (7.11) to (7.13) is also possible, if we are willing to accept G and G* as the "generalized 
source" and "generalized vortex" respectively. Actually, there is ample justification for this. One of the possible representation of the 
Green's function for the wind tunnel case is namely [7.10]: 

G = Gp + G^ (7.20) 

where 

is a nonsingular function satisfying 

Gw = Gw(x,y;?,?)) 

d^G^     32 G^ 
h    , h 

P    +    = 0,        - <x> < X  < <x> <y<— (7 211 
3x2 gy2 '2^2 ^'■^'■' 

By the properties of harmonic functions G^ has derivatives of all orders inside the wind tunnel, while outside Gw has singular points 
(images). 

Briefly, the Green's function is the sum of a singular and a nonsingular function, with the sum satisfying the required 
boundary conditions on the tunnel boundary. Physically, G can be interpreted as the source singularity plus the induced effect of 
tunnel boundaries. SimUar interpretation can also be lent to G*. 

In conclusion, it is instructive to point out the connection between Equations (7.20) and (4.3). The decomposition, which „ 
rigorous in the microcosm of Green's functions, is in engineering practice assumed to be valid in the macrocosm of potential functions" 

IS 

7.2   Examples of Green's Functions 

Although Gp and Gp can also be used in Equations (7.6) to (7.13), it is often advantageous to eUminate, by selection of a 
suitable Green's function, the unknown values of <t> and 30/3T) from the waU integral (7.7) or, alternatively, the unknown values of 
30/aj and 30/3?) from Equation (7.12). The resulting form of Green's theorem for the wind tunnel case. Equation (7.5), is then simUar 
to that for free air. Equation (7.15). Depending on the type of tunnel wall (solid, porous, slotted) or boundary measurement (static 
pressure, flow angle), the Green's function may be required to satisfy different boundary conditions. 

Solid waU boundary conditions (Neumann problem) 

Since 

30 /       h\ 
°«   <   X   <   oo 

the wall integral (7.7) drops out if 

9G /      ,     h 
{^,y;i,±- 3^ ,-„.,-„, = 0,      -oo<j< 

By the synunetry property of the Green's function for the Neumann problem [7.11], the above boundary condition is equivalent to 

3G/      h      \ 
-^^x,±-;{,r)j   =  0,        -oo<x<c» (7 22) 

Using separation of variables the solution of the boundary value problem described by Equations (7.4) and (7.22) is [7.4] 
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1   Ix-J|      1 

Ix-ll 

„„        „ „      X ; cosA„  y+ —I cosAn |r?+ — 
2(3h     P        /3h .^—' X„ \     2/        " \     2 

n = l 
E (7.23) 

where 

nTT 
(7.24) 

The isolated term in front of the sum is the zero-order cosine coefficient, corresponding to the eigenvalue Xg = 0. 

Open jet boundary conditions (Dirichlet problem) 

Since 

H) ■ — 1    =   0, -oo<X<o° 

the wall integral (7.7) vanishes if 

G(x,y;i±-1  =  0,        -<»<?< 

or, by the symmetry argument 

G(x,±-;{,r))   = 0, < x< (7.25) 

The Green's function for the Dirichlet problem, satisfying by Equations (7.4) and (7.25), is [7.12] 

G(x,y;J,Tj) 

oo —K 

e 

|x-f 1 

h Z ^-j^^^^-f "i) ^"^'' (""i) (7.26) 

The appropriate eigenvalues \ are again given by Equation (7.24). There is no zero-order term in the Fourier sine series. 

Slotted wall boundary conditions (Mixed Dirichlet-Neumann problem) 

For longitudinally slotted walls represented by the boundary condition 

^(^-i)*^i^('^'4)  = °' < X < 

the wall integral (7.7) is made to vanish if 

^H-i)*^^(^'^^^-l) = °' < i < 

For the mixed Dirichlet-Nevmiaim (or Robin) problem the symmetry principle is again applicable [7.11], so that G also satisfies 

/      h      \ dG /      h      \ 
<»   <  X   <   oo (7.27) 

Using eigenfunction expansion similar to that described in Reference [7.13], the solution of the boundary value problem specified by 
Equations (7.4) and (7.27) can be constructed as [7.4] 

G(x,y; '^'^'^^^-^S 
oo -\„ 

e 

Ix-fl 

n=l  K (>->-?) 
X„ K cosXn (y + ^] + sinX„ (y + -^j   \i K cosX„ ('J + ■^j + sinX„ h + -j (7.28) 

where the eigenvalues \ are the positive roots of the transcendental equation 
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2 
tan(X„h) =  — (7.29) 

K\_ - —- 

We can easily verify tiiat Equation (7.28) yields the open jet solution if K -»■ 0. The closed wall solution is not obtained in 
the limit K ^ o°, but this deficiency can be corrected by formally adding the missing zero-order coefficient when 1/K = 0. The physical 
aspects of the discontinuous behaviour of the blockage correction at closed wall condition are discussed in Section 4.3. 

Porpus waB boundary conditions (Riemann-Hilbert problem) 

The ideal porous (or perforated walls) satisfy the boundary conditions 

30 

a X V '2/     Pu   ay V '2/ 

1   30 /      h\ 

■ °°   <   X   <   oo 

30/  _h' 

3x r'~ 2 

where Py and PL are the upper and lower wall porosity parameters. The substitution in Equation (7.7) shows that the wall integral 
will be zero if G satisfies 

3G 

3f 

h\       1   3G / h\ 

(      ^    h\      1   3G /      ^    h\ 

< % < 

However, with respect to co-ordinates x,y the Green's function still obeys the original boundary conditions: 

3G 

3^ 

3G 
3x 

/h\l3G/h\ 

-°° < x < °o (7.30) 

/h\l3G/h\ 

t'-i^^'''j-pT^(-iH=° 

.The eigenfunction expansion of the Green's function for the porous wall case can be obtained by the method of 
Kacprzynski [7.14]. However, if we are interested only in the derivatives of G and G*, the analytic results obtained by the method of 
images in Chapter 5 can be utUized. RecaUing that G and G* describe the potentials due to the unit source and unit vortex between the 
walls, we obtain from Equations (5.5) and (5.19) to (5.27) the derivatives of the wall interference parts G^ and G^^ 

.;      -r-(x,y;?,r?) = — Re   B(x,y;J,77) + E(x,y;J,r)) + x(Pu)X(PL) (7.31) 
^^h. 

(x,y;J,r?) -Im|B(x,y;J,rj) + E(x,y;J,r))J (7.32) 
3y       ""■'" (3h 

^^w 1       r -] 
-^(x,y;f,7?) = - —Im[B(x,y;J,rj)- E(x,y;f,j})J (7.33) 

^*^w 1       r -1 . 
-^(x,y;?,r?) = --Re [B(x,y;{,i7)-E(x,y;|,7j)J (7.34) 

where 
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B(x,y;t,T?) = 

71 
''u + '-L/x-? ^ .y -r,\1 

1 '^^ 2     Uh   " hi 
2 

exp 
/x-f        y-r)Y 

- 1 
„   /x-? ^. y-ij 
2ir   + 1 — 

|3h h 

1    ■^T^        /'"U + ''L^ 

n = l 

,x-|     . y-v 

|3h h i-^ y-n 
 +1 
Hh h 

< 2 (7.35) 

E(xj;|,T?) 

exp 
'■U + '"L/X-J /x-J     .y+7j\ 

exp 
/x-? ^ . y + i)Y 

TT      + 1   

exp 

+ 1 (■•^) 

-exp^i.-^j    Z.   ^4-i 
T"! 

, x-{      y + T? 
IT     +1   

Ph        ,    h 

n = 0 

x-|^. y+j? 

|3h      '     h 
< 1 (7.36) 

and 

2 ^u 
Tjj  = — atan 

P   ' 
0 <   7u   <   1 

(7.37) 

— atan —- 
TT ^ 

0 <  r,    <  1 

X(P) 
1        ,       P  =  0 

0        ,       P > 0 
(7.38) 

The symbols B^ and E„ denote the Bernoulli and Euler polynomials respectively, Equations (5.22) and (5.24). 

Pressure boundary conditions (Dirichlet problem) 

Assuming that the wall pressure coefficients, C- (x,± h/2), are known from static pressure measurement, the small disturbance 
boundary conditions can be specified as 

30 /      h 
9x r' 2 

-C^   x, + - 
2    P V      2 

To eliminate from Equation (7.12) the normal derivatives of <{) (flow angles) we use the Green's fimction (7.26) for the homogeneous 
Dirichlet boundary condition (7.25). However, since (^ is in fact subject to the inhomogeneous Dirichlet condition 

*(^-i)^-i /^"(^-i) ±-   dx 

the wall integral will contain the (knovra) boundary values of 0 and be in general non-zero. Evidently, the integral will be vanishing in 
the open jet case, where 

Cp lx,±-| =  0, ■ oo   <   X   <   °° 

Flow angle boundary conditions (Neumann problem) 

If, on the other hand, the flow angles 6 (x,±h/2) along the walls are known, 0 is subject to inhomogeneous Neumann 
boundary conditions 
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m)-'k-'i) 
The unknown values of 0 are eliminated from Equation (7.7) by utilizing the Green's function (7.23) for the homogeneous Neumann 
condition (7.22). Solid, parallel walls are the special case 

0, - o°   <   X   <   °o 

for which the wall integral (7.7) vanishes. 

Combined pressure and flow angle boundary conditions 

If both the pressures and flow angles along the tunnel walls are given, the potential flow problem for the region shown in 
Figure 7.1 is not well posed. This means that the problem may not have a solution i£ the boundary values are prescribed arbitrarily or 
are measured, subject to usual experimental errors. However, such boundary conditions are still useful for solving the tunnel exterior 
flow problem, allowing to obtain the wall corrections without considering the local flow conditions near the airfoil, see the method of 
Ashill and Weeks, Section 6.5. 

7.3   Method of Sawada 

Using Green's theorem, Sawada [7.5], [7.15], [7.16] developed an alternative solution to the wall interference problem by 
Capelier, Chevallier and Bouniol [7.17], see also Section 6.2. 

The velocity correction on the tunnel axis is defined as 

9* ^^F 
uw(x,0) = -^(x,0±)---(x,0±) 

ox ox 
(7.39) 

assuming that it is continuous across y = 0. This is equivalent to the condition 

30 dd) ^*F 3*F 
— (x,0+)-—(x,0-) = -—(x,0+)---(x,0-) 
ox ox ox ox 

(7.40) 

In other words, it is from the beginning assumed that the wind tunnel test is correctable, i.e. the load distribution measured in the wind 
tunnel is equal to that at certain free stream conditions. 

The velocity correction (7.39) can be evaluated by substituting from Equations (7.5) and (7.15). Since we wish to eliminate 
the (unknovra) flow angles along the walls, we use the Green's function (7.26) satisfying the Dirichlet boundary condition (7.25). 
Utilizing Equations (7.5), (7.15), the airfoil boundary condition (7.2), and neglecting the difference between the domain integrals (7.13) 
and (7.17), we obtain 

"w(x,0) / 
d<t> ^      dG* 
T-({,T)) -r-(x,0;f,rj)dj 
of ox 

'      2 

J   ri 

I df^d)   df-(?) 

d? df 

9Gw 

"a 

xt 

-(x,0;|,0)df +     J Tr(J,0+)-77(^,0-) 
3G^ 

(x,0;f,O)df (7.41) 

From Equations (7.10), (7.18) and (7.26) we derive, after some manipulations, 

ac* /      .    h\ 1 1 
-—   x,0;f,±-    =  +  
ax   \     '^'   2/ 2/3h / 

cosh 
/3h 
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-—(x,0;J,0) = — (x,0;f,0)---(x,0;J,0) 
ox ox ox 

sinh 
':'^) 

2/3^11 .._,. /_^-t\      27r(3(x-J) 

;n: E »■ I A f^)-' 
'^      n = l 

ix-tl^^ 

ir     X-J 

12p2h   ^ °(^)' 

^<^w 3G* ^'^F 
^—(x,0;J,0) = —-(x,0;f,0) - —-(x,0;?,0) = 0 

OX ox OX 

The identical results can also be obtained from Equations (7.31) to (7.38) by putting Ty = T^ = 1. 

Substituting the above expressions in Equation (7.41), we arrive at the solid blockage correction of Sawada [7.15] 

. "*^^'°> = -I^^-i^     J 2 /  x-A ^'-''^ 
cosh f^) 

where 

1 

M =      /     [f^m - f-(l)] df (7.43) 

is the cross-sectional area of the airfoil. 

If 

^P   (f'±^)    =0' -o=   <   J   <  oo 

Equation (7.42) reduces to the standard open jet blockage correction (4.102). The same is much less obvious for the correction 
formula (6.23) by Capelier, Chevallier and Bouniol. However, the connection between the two formulas is not difficult to 
establish [7.18]. Substituting in Equations (6.16) the doublet singularity 

MX 
*F (x,y) = ;;i:; 

2'r(3   x2 + ((3y)2 

we obtain from Equation (6.17) 

Uw (x,0) = - -^ J (x) / 
*^ 2ph 2^     ^ 

^Pl^'ij^^p   «--i/ dj 

cosh 
V ^. 
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J(x) 

CO 

/ 
_3_ 

a? 
dj 

{2 + (4j'-(-^) 

^^h (^) 

7   /TTX' 

20 

To the first order of approximation both formulas thus agree. 

Similarly to Equation (7.39), Sawada defines the incidence correction as 

vw(x,0) =  -^(x,0+)--—(x,0±) 
3y ay 

(7.44) 

The continuity across y = 0 requires that the airfoil in free air be suitably rotated, i.e. 

^^F df'-(x) 
-— (x,0+) = —^ - Aa 
oy dx 

3*F df-(x) 
-—(x,0-) = —7^- Aa 
oy dx 

(7.45) 

From Equations (7.5) and (7.15) it follows for the incidence correction [7.16]: 

vw (x,0) 
cC, 

4h 
- oo 1 + exp I2jr 

i3h 

df (7.46) 

Again, if 

H)=». < i < 

the lift-dependent part of the incidence correction (4.103) for open jet is obtained. Equivalence with the incidence correction (6.24) is 
verified by substituting the vortex singularity 

<AF (x,y) = atan — 
TT X ■ ■ 

in Equations (6.16). 

Compared to the method of Capeher, ChevaUier and Bouniol, Sawada's approach is more elaborate, but in principle adaptable 
to transonic flows, provided that the neglected nonlinear field contributions (double integrals) could be worked out. 

7.4   Bland's Method for Steady Subsonic Interference 

The method [7.19], originally developed to calculate oscillatory airfoil loadings in wind tunnels, has a very simple algorithm 
for the linearized, steady flow case. As is common for all integral equation methods, the wall interference corrections are obtained 
indirectly, by comparing the computations in the wind tunnel and free air. This guarantees a proper aerodynamic coupling between 
the model and the walls, which obviously is not the case in the classical interference theory, where the model boxmdary condition is 
not directly taken into account. The collocation technique, used to solve numerically the singular integral equation, is ideally suited 
for computing unsteady wall interference, where the coupled nature of interference between the walls and the model is of primary 
concern [7.20]. We shall turn to the unsteady wall interference problem in Section 8.3. 

As in Reference [7.19], it will be convenient to normalize all lengths by the airfoil semi-chord, c/2. The domain 
integral (7.13) is neglected, assuming the flow to be subsonic linearized. The wall boundary condition is supposed to be known and the 
Green's function constructed in such a way that the integrals along the walls vanish. From Equations (7.5) and (7.11) in that case 



114 

0(x,y) = 
/ 

^({,7?) G* (x,y;J,r)) + ^ (?,7}) G (x,y;f,T)) f d| 

r? = 0 + 

TJ =  0- 

(7.47) 

Furthermore, Eland's method deals only with the lift effect. The airfoil is considered infinitely thin, represented by the 
boundary condition 

c)(j) d(t> df(x) 
— (x,0) =  — (x,0±) = -^ = v(x) 
dy dy dx 

(7.48) 

Here f describes the distribution of camber and v is the normal velocity on the airfoil, also called the upwash*. In this simplified case 
the second integrand in Equation (7.47) drops out. By differentiating Equation (7.47) with respect to y and introducing the vorticity 
distribution 

30 30 1 r -] 
7 (X) =  ^(x,0+) - — (x,0-) = - [Cp (x,0-) - Cp (x,0+)J (7.49) 

we obtain 

/ 
v(x) = -^      I     K(x-J)7(f)dJ 

-1 

(7.50) 

where the kernel is given by 

2ir 9G 
K(x-J) = - — —-(x,0;{,0) 

P   9y 
(7.51) 

Since the upwash is known from the airfoil boundary condition (7.48), Equation (7.50) represents an integral equation for the 
vorticity y. It can be classified as a Fredholm integral equation of the first kind; its kernel identifies it further as a Cauchy singular 
equation. 

The factor - 2rr/j3, introduced in Equation (7.51), allows to obtain from Equation (7.19) the "net" Cauchy kernel 

1 
Kc(x-f) 

x-J 
(7.52) 

in the free air case. The solution of the corresponding Glauert equation 

v(x) 
27r    j     x-J 

d{ 

-1 

(7.53) 

subject to the Kutta-Joukowski condition y (1) = 0, is given by the Sohngen inversion formula 

(37 (x) 

  ±   

IT y 1+s. j \/i-j j-x 
(7.54) 

As noted by Bland [7.19], formulas (7.53) and (7.54) can be symmetrized by introducing the pressure factor 

./- (x)  =  - 
py (x)      /l + x 

2       V 1-x 
(7.55) 

For the free air case we then obtain the transformation pair 

♦Bland, since his y axis is oriented downwards, prefers the term "downwash". 
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1     f    /l-5   iiiX) 
v(x) = -     /   \ /—-  -^-^ dj. 

■n    J    \j 1 + i,   ^-%    ^ 
^(x) - r/ J   ^x d{ (7.56) 

It can be shown that the pressure factor t/; is a continuous function on the interval - 1 < x < 1 provided v is also continuous. 

For the wind tunnel case, the substitution of the pressure factor (7.55) in Equation (7.50) leads to Eland's integral equation 

1       f      /l^ 
IT j yi+j 

(x-{)   ^({)  dj (7.57) 

The theoretical advantage of Equation (7.57) over (7.50) is that (7.57) has a unique solution with the correct leading and trailing edge 
singularities. Without the auxiliary KuttaJoukowski condition, Equation (7.50) does not have a unique solution. 

In solving the singular integral equation (7.57) it is convenient to expand the unknown pressure factor into a series of 
orthogonal polynomials [7.19] 

v„(x) 

7  A      1 In I arcos x 
\     2/ 

il —arcos xj 

It is easy to verify that these are polynomials of degree n - 1: 

vi (X) = 1 

V2 (x) = - 1 + 2x 

Vj (x) = - 1 - 2x + 4x2 

V4 (x) = 1 - 4x - 4x2 + 8x' 

V5 (x) = 1 + 4x - 12x2 _ 8J^3 + ]^g^4 

'/'n(x) 
IH} 

11 — arcos X 1 
\2 / 

>/'l (X) = 1 

1//2 (X) = 1 + 2x 

\\i-i(yi) = - 1 + 2x + 4x2 

1^4 (x) = - 1 - 4x + 4x2 + 8^3 

^^5 (x) = 1 - 4x - 12x2 + 8x3 + igx4 

(7.58) 

see Figures 7.3 and 7.4. They can be generated by the recursion formulas 

v„+2(x) =  2xVn + i (x)-v„(x) 'i'n + 2(x) =  2xi//„+i(x)- i//„(x) 

Because of the interrelations 

v„(x) 

- 1 

1^    ^n(i) 

1 TT d{, ^"(='' = 7  /Vl 
l + f   v„({) 

i  s-x dj (7.59) 

cf. Equations (7.56), v„ and i//^ are called the upwash and pressure polynomials or, collectively, the airfoil polynomials. 

The polynomials have the following orthogonality properties [7.19] 

TT j Yi^ Vm (x) Vn (x) dx = 6„„ '/'m(x) i/n (x)dx  =   6„ (7.60) 

where 6^„ is the Kronecker delta. From the interval of integration - 1 < x < 1 and the weight functions 

and 
1-x 

1 + x 
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it transpires that v„ and i//^ are the Jacobi polynomials 

m 
and 

i-0 
except that they are not standardized in the usual way [7.22]. 

Since the airfoil polynomials form complete orthogonal bases [7.21], we can expand v and \j/ in infinite series 

E V (x)  =    7   .   b„ v„ (x) , 

n= 1 

"P (x)  =   2_^    ^ '^n 
n=l 

(x) (7.61) 

where, by the orthogonality properties (7.60) 

i     f    fllZ 
■n    J    yi-x V (x) v„ (x) dx , 

^  ^  1^    J    \l l + x ^ (x)  i/'n (x)  dx (7.62) 

For the free air case, where Equations (7.56) hold 

^^^    /\/^ + x 
'/'„(x) 

- 1 

1    f   |i+i v(» 
df dx 

'/'n(x) 1       f      llTj 1       f      [l-x   V'n(x 
dx dJ = b„ (7.63) 

Hence, by representing the upwash by the first of Equations (7.61), we obtain the pressure factor directly as 

(x) = ^ 4>ix)   =    y        b„  V/n (X) 

n = l 

(7.64) 

For the wind tunnel case the situation is not as simple because the Fourier coefficients for the pressure factor and upwash 
are no longer equal. To solve the integral equation (7.57), Bland proposes the following approach. The pressure factor is approximated 
by the finite series 

N 

^""(l) 2^ < K a) (7.65) 

n = l 

The substitution in Equation (7.57) results in 

v(x) ?)   ^n (f)  d| (7.66) 

n = l 

which, in order to determine the constants aJJ^, n = 1, 
the N zeros of the upwash polynomial v^ + j, that is 

, N, is required to be satisfied at N collocation points. These are selected to be 

2m7r 

2N + 1 ' 
m = 1,. . .,N (7.67) 
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The integral equation (7.57) is then reduced to a system of N linear algebraic equations 

N 

n = l 

A'*    a^ = c^ ,        m = 1, . . . , N (7.68) 

where 

and 

<^^   = vCxN + i) m \   m      / (7.69) 

) dJ (7.70) 

The determination of the kernel function, which is of a singular nature, is the crucial part of the method. The case of 
(idealized) porous walls is one of the few exceptions for which the cloased form of the kernel function is known in a closed form. From 
Equations (7.51), (7.20), (7.19) and (7.34) we have for unequal porosities 

ir / ^u+T^L   x-A 
K(x- ?) = — exp   TT   

^      ^'      ^h     ^ \      2 ^h / 
exp 11!     - 1       exp I TT  1 + ] 

where T^ and TL are given by Equations (7.37). For equal upper and lower waU porosities, T^ = TI_ = T 

I    --^\ exp \T!T  
TT V      |3h K(x-f) = -—y-^ 

|3h /   x-J 
smh   77  

\    /3h 

Finally, for solid walls, T = 0, 

(7.71) 

(7.72) 

and for open jet boundaries, r = 1, 

K(x-?) = 

K(x-J) = 

^h    . ^ /  X-? 
smh [it  

exp I TT  
TT       ^\     (3h 

)3h 
sinh kit) 

(7.73) 

(7.74) 

Apparently, the kernel functions (7.73) and (7.74) were first given by Hantzsche and Wendt [7.23]; for more recent 
applications of the solid wall kernel see References [7.24] and [7.25]. The porous wall kernel (7.72) is due to Fromme and 
Golberg [7.26]; the unequal porosity kernel, Equation (7.71), is a new result. The kernel function for longitudinally slotted walls is not 
as compact as the above cases, since the corresponding Green's function (7.28) contains eigenvalues that are roots of the transcendental 
equation (7.29). It is given by Equation (8.64), obtained from Eland's unsteady flow kernel. 

To evaluate the collocation matrix (7.70), the kernel is split into the Cauchy and analytic (wall interference parts): 

K(x-g) = Kc(x-J) + Kw(x-J) 

Using the power series expansions (7.35) and (7.36), we obtain the analytic part of the porous wall kernel (7.71) 

x-A" 

(7.75) 

Kw(x-J) = 
;3h i:""(^)^*i«-('^)i:^-(^)Q 

n=l n=0 

where B„ and E„ denote the Bernoulli and Euler polynomials, Equations (5.22) and (5.24). 

(7.76) 



For equal upper and lower wall porosities, Tfj = Tj^ = T, 

Kw(x-J) = - E 
n = l 

BnW 

n = 0 
^iZ^""(^>-     „! 

OO 

27r  V^        /l + r' 
277 5lf 

|3h 

n=l 

(7.77) 

The solid wall and open jet cases are easily obtained by substituting r = 0 and T = 1 respectively. 

In accordance with Equation (7.75), the matrix is decomposed as 

iN    = rN    j. OTN 

For the Cauchy singularity we have in closed form 

1 

-      f     ^ Kc(x-J)  \pAi) d? = v„(x) 

(7.78) 

and hence 

Vn   {-T') 

The analytic part is obtained numerically, using the N-point Jacobi-Gauss quadrature: 

1 N 

-1 j=i 

(7.79) 

(7.80) 

so that 

WS ^Z(i-ro^w(xr*-rV"(^f") 
j=i 

(7.81) 

As quadrature points selected are the zeros of the pressure polynomial '/'[^ + j: 

&*^  =  cos 
2j7r 

2N+1 ' 
j = 1,...,N (7.82) 

We may note that the collocation and quadrature points are interleaved as 

- 1   <  Xi   <  JN   <  X2   <    ....    <   ^2   <  XN   <   5l   <   1 

Using a three-way equivalence between collocation, least squares and Galerkin's method, Fromme and Golberg [7.26], 
[7.27] established that 

1-        N       1       r     /l-x 

-1 

which is a proof of convergence for Bland's method 
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Once the Fourier coefficients a„ are known, the vorticity distribution is evaluated from Equations (7.55) and (7.65) as 

7(x) 
2      /l-x 1- X    ^^—r —    2^   a„ ^„ (X) (7.83) 

With the help of the second Equation (7.60) the lift coefficient is obtained as [7.26] 

1 

7(x) i/'i(x) dx "/'I (X) = 1 

2n 

' (3 

X 

El       f      /l-x 
^7 J v^"^"*'^*^ (x) dx 

27r 
 a. (7.84) 

and the quarter-chord pitching moment coefficient 

1/ 
-1 

i//2 (x) = 1 + 2x 

n -1 

(x) \p2 (x) dx 

2|3 
aj (7.85) 

These particularly simple formulas, involving only the first two pressure Fourier coefficients, are a direct consequence of the 
orthogonality properties of the airfoil polynomials. 

As mentioned before, in Eland's method the wall interference corrections are obtained indirectly, by comparing the free air 
and wind timnel computation results. However, the connection with the standard incidence correction (4.95) of the classical wall 
interference theory is not difficult to show. From Equations (7.50) and (7.77) we have for a small airfoil, c = 2 « h, 

vw(0,0) = 
2ir / 

Kw(-t) 7(t) d{ 

/1 + T\    COTT        /1+T\ 

where 

/ 
y =    I   7 (S) df 

I 

X 

/ 
" =  -      I     7 (?) M? 

'1 
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7.5   Method of Kraft 

The integral equation formulation for transonic wall interference is due to Kraft [7.28], [7.29]. Although the equation was 
obtained for both lifting and nonlifting airfoils, only calculations for symmetrical flow cases were given, so that we restrict ourselves to 
these. The wall boundary condition is assumed to be of the porous type, and the wall integral (7.7) is eliminated employing the Green's 
function satisfying Equations (7.30). For symmetry reasons, the upper and lower wall porosities are assumed to be equal, Pu ~ ^L ~ ^■ 

Utilizing the synmietrical airfoil boundary condition , 

30 30 1  dt(x) 
— (x,0+) = --^(x,0-) = -—^ (7.86) 
3y 3y 2     dx 

where t denotes the thickness distribution, we obtain from Equations (7.5), (7.6) and (7.13) 

h 

1 2       <» 
/dt(|) ,   K + 1       r       f    1 (H        \^  3G 

-^ G(x,y;?,0) dJ-Mi -^     J       J     _f —(j,^)j    — (x,y ;^,r)) d? dr? (7.87) 

-1 h    -°° 

2 

To be consistent with the method of Section 7.4, all lengths are ^ain normalized by the airfoil semi-chord.' The principal value 
definitions of the above integrals are 

1 I      x-e oo 

/   . . . dj = lim /       . . . dj +       / . . . dj } (7.88) 

x + e 

I /    . . . d{ dr? = lim        I      |      /       . . . dj +        /    . . . d|     dr? (7.89) 

x+e 

although in the latter case other interpretations are also possible, see References [7.31] to [7.33]. 

To replace the potential function by the x component of disturbance velocity 

u(x,y) = 7-(x,y) (7.90) 
ox 

we need to differentiate Equation (7.87) with respect to x. Since in the principal value definitions (7.88) and (7.89) the integration 
limits are x-dependent, the formula for differentiation under the integral sign has to be employed. For the thickness integral thus 

_3_ 

3^ 
- 1 

C   dt(J) r   dt(|) 3G dt(x) r n 
I    —^ G(x,y;|,0)dj =      /    —^ — (x,y ;^0) d? + —^' lim    G(x,y ;x-e,0) - G(x,y;x + e,0) 

J        dj J        dj     3x dx    e^o '- -■ 

The analytic part G\y of the Green's function obviously does not contribute to the above limit, so that only the singular part Gp needs 
to be considered. However, even that is continuous as may be verified from Equation (7.18), so that the limit in the above expression is 
zero. 

The situation is different with the double integral of Equation (7.87). We have 

*Kraft uses the unit chord length. 
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9        f       f    1   ■, 9G 

h 

2 
f       r   1   , d^G f    1   , r9G 9G 1 
I /     -u  (?,'?) ^^(x,y;J,T?)dfdT) + lim        I     -uMx.i))   — (x^;x-e,r}) - — (x,y;x+e,r))    dTj 

Substituting from Equation (7.18) we find that the limit is 

lim 
e->0 

1   r 1 , 
 /   - u^ (x,n) 

7r|3      J     2      ^  '" e2+|32(y-„)2 
dTj 

2(3 
u  (x,y) 

Accordingly, from Equation (7.87) we obtain the following integral equation for the component of the disturbance velocity 

u(x,0) 
f   dt(|) dt(J) 9G ,  K + 1 

-^ —-(x,0;J,0)d{ + M2  —- 
dj     9x ^  '      ' ^ "   U„ 

2 

2/3 
u2 (x,0) /  / h'-^ 92G 

9x9f 
(7.91) 

where the integrals are interpreted as principal values (7.88) and (7.89). 

As pointed out in Reference [7.1], in contrast to Eland's linear integral equation (7.57) no rigorous theory seems to exist 
describing either the existence or uniqueness of solutions to (7.91). To facilitate its analysis, the Green's function is split according to 
Equation (7.20). The derivatives of its free air part are obtained from Equation (7.18) as 

9G 
— (x,0;J,0) =  -—  
ox 27rj3  X - J 

(7.92) 

^^^F                       1       (x-S)2-(3V 
7-rr(x,0;{,r?) = ——  

[(x-?)2+(3V]' 
(7.93) 

The derivatives of the analytic (wall interference) part follow from Equations (7.31), (7.35) and (7.36). We have 

ac, 
-—(x,0;S,0) =   Re{B(x,0;t,0) + E(x,0;f,0) + X(T)^ 
9x ^2h I f 

x-J 
1    )  1   V^ \    /3h / 1   V^ 

^       2   2^«"(^)-^^-IL"" (r) 
i'l^r |x-JI 

+ X(T) }     ,      —-^ < 1 (7.94) 
^h 

n = l n = 0 

or, in a more compact form. 
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9G^ 

ax 
(x,0;J,0)  =    

/    x-J T\ 
exp \2iT 1 

\      Ph   2/ 1 

exp [2TT ^   -1      2ir—^ 
\      /3h / ^ 

+ xW 

1 

3% E 
n = l 

(-1^)" 
+   XiT) 

|x-|| 

(3h 
< 1 (7.95) 

Similarly 

3x3f 
(x,0;J,77) =   Re —   |B(x,0;irj) + E(x,0;ir))l 

2/3^h 3u2 
Re E 

n = 2 

B„(r) 
\Ph       h/J 1 

n(n-2)! 
En(r) 

|3h ■I)] 
(n-l)! 

n = l 

— +1— 
(3h        h 

<  1        (7.96) 

In the above formulas again Bn and £„ denote the Bernoulli and Euler polynomials, Equations (5.22) and (5.24). 

In the free air limit, h ^ °°, Equation (7.91) reduces to Oswatitsch's integral equation [7.6] 

u(x,0) 
1 f   dt(J)   dt ,K + 11, 1       f      f    1   . 
       I    —— —^ + M2       - u2 (x,0) /        /     - u' 
27r/3     J       d{    x-J "  (3U„     2      ' ' '     27r    J      J     2 

oo oo 

'■ (i,ri) 

- OO     - oo 

(X-S)^-PV 

[(x-J)2 + /3V]' 
dfd?) (7.97) 

The nimierical methods used by Kraft are straightforward generalizations of those of References [7.30] and [7.34] to [7.40], used to 
solve Equation (7.97). Kraft, similarly to Nfirstrud [7.37], reduces Equation (7.91) to a one-dimensional integral equation assuming an 
exponential decay of the axial velocity in the transverse direction: 

u(x,y) = u(x,0) e r(x) (7.98) 

The decay parameter, consistent with the irrotationality condition at the airfoil, is 

u(x,0) 
r(x) 

au 
3y 

(x,0) 

(7.99) 

However, its actual form does not seem to matter greatly [7.38] and it is often sufficient to consider it constant over the airfoil. 

In addition, it is assumed that in transonic flow the nonlinear field contributions upstream and downstream of the airfoil can 
be neglected [7.39]. Accordingly, the double integral of Equation (7.91) can be reduced to 

h 

~2       1 

I/" 
0     -1 

^n 
a^G 

^(f,0)e   '«> T—7(x,0;J,77)dJdr) 
oxaj 

In the numerical procedure the flow field above the airfoil, -l<x<l,   0<y< h/2, is divided into N vertical strips of 
width 2/N, see Figure 7.5. Denoting 

■1+   k 
IN  2 

2/ N 

the centreline of the kth strip and putting 
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u(x,0) = U|^ 

r(x) = r^ 

1 + 2(k-l)/N < X < -1 + 2k/N 

the integral equation (7.91) reduces to a system of N nonlinear algebraic equations 

M^ 
"k  =   Uk 

K + 1 

(3     U. 

Heze 

2 '■^ 2 

2        /   /     ""J   2 

j = l 

(7.100) 

/ 
dt(f) 3G 

dj     3x 
(Xk,0;{,0) d? (7.101) 

and 

2       -1+2J/N 27, 

Akj  =  2P 
// ax3j 

(x,,,0;j,r))djdr} (7.102) 

0     -l + 2(j-l)/N 

The contribution of Equation (7.92) to the thickness integral (7.101) is obtained by standard techniques, e.g. using cosine 
substitutions for x and |, expanding the thickness t into Fourier series and integrating term wise. Reference [7.41]. The contribution 
of Equation (7.95) is an ordinary integral, whose quadrature does not pose any particular difficulties, except perhaps meeting the 
convergence criteria for the series representation at higher Mach numbers. 

The contribution of Equation (7.93) to the influence matrix (7.102) can be obtained in closed form in terms of cosine and 
sine integrals, as described in References [7.28] and [7.38]. The contribution of Equation (7.96) to the influence matrix is again an 
ordinary integral. 

Equation (7.100) must then be solved numerically via some sort of iteration procedure. For the case of subcritical flow rapid 
convergence can be achieved with the simple Picard iteration. However, if the flow becomes supercritical over a portion of the airfoil, 
this iteration method fails to converge and more sophisticated methods have to be sought, such as the fixed-shock iterative scheme by 
Spreiter and Alksne [7.30]. Further details are given in Reference [7.28]. 

A typical result for supercritical flow over a biconvex airfoU in a solid wall wind tunnel is compared in Figure 7.6 with the 
relaxation solution of Murman [7.42] and the time dependent solution of Laval [7.43]. Using N = 20, the integral equation solution 
provided in 10 or 15 iterations an excellent agreement with finite difference solutions, at a fraction of the computation cost. A similar 
result for flow in a porous wall wind tunnel, comparing the integral equation result of Kraft and Lo [7.29] with Murman's relaxation is 
shown in Figure 7.7. The comparison with experimental data of Collins and Pfrupp [7.44] on a 6% biconvex airfoil in a solid wall test 
section is shovm in Figure 7.8. 

For linearized subsonic flows, where the quadratic velocity terms of Equation (7.91) are negligibly small, we no longer 
deal with an integral equation. The axial disturbance velocity is obtained by a simple integration, as a sum of the free air and wall 
interference contributions 

u(x,0) = Up(x,0) + uw(x,0) (7.103) 

where 

Up (x,0) 
27r/3     j 

dt({)    d^ 

d{    x-J (7.104) 

and 

r dt(i) 9Gw 
uw(x,0) =      I    -^ -^ (x,0;|,0) dj (7.105) 

-1 
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A method for correcting the measured surface pressure distribution for streamwise variations of u^y was proposed by Binion 
and Lo [7.45]. In spite of claiming success in some superciitical flow cases, the superposition (7.103) is justifiable only if the entire 
flow is governed by the linearized potential equation. 

For small airfoils, c = 2 « h, it is convenient to interpret u^ instead as a correction to mainstream. Integrating 
Equation (7.105) by parts and using Equation (7.95), we obtain in accordance with the velocity correction (4.94) 

aov 
u^(0,0)  =   t(l)—(0,0;0,0)-^^ (0,0;0,0)       I t({)dj 

o 
H\^,^Xir) 

utr        /T 

j3V       ^2 

where 

a = t(l) 

'=/ 
t(f)dt 

If the trailing edge is closed, t (1) = 0, the wake blockage term drops out. 
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Fig. 7.1     Domain for application of Green's theorem 

(a) CONTINUOUS-FLOW DOMAIN 

(b) COMPLETE   FLOW DOMAIN 

Fig. 7.2    Flow domains 
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Fig. 7.5    Subdivision of flow region above the airfoil 
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8.0 UNSTEADY WALL INTERFERENCE 

8.1 Governing Equations 

The small disturbance equation appropriate to unsteady subsonic and supersonic flows is 

(l-Mi) —^+—!!-- 2 ^=0 (8 1) 
^   3x2        ay2 U„   3xat     u2     gt2 

It describes propagation of waves in a wind tunnel with a free stream velocity U^ in the x direction. By the superscript t we indicate 
that 1^' = 0' (x,y,t) is the time-dependent disturbance velocity potential. When the stream Mach number M„ is close to unity we have 
to use [8.1] 

1 - M2  - —- (K + 1) ^ 
U„ 3x 

320t       320t Mi   32,^t      Ml  g2^t 
 + 2-——- =0 (8.2) 
3x2      9 2        U„ 3x3t    u2    3t2 

where we recognize the nonlinear term, present in the steady transonic equation. For flow over a harmonically oscillating airfoil, we set 

0* = 0(x,y)e'"' ■ (8.3) 

where (j) is the (complex) amplitude of 0* and co is the angular frequency. Accordingly, from Equation (8.1) we obtain 

/,    wo\ 9^*    320 , 30      ,    - 
(1-M2) —!: + —!:-2ikM2 -^ + 1I2M2 0 = 0 (8 4) 

3x2    ay2 3x - 

which is elliptic for subsonic flows, M„ < 1, and hyperbolic for supersonic flows, M_ > 1. The parameter 

CO 
k = — (8.5) 

is the reduced frequency. It is customary to make it nondimensional by normalizing all lengths by the airfoil semichord, cf. Figure 8.1. 

By substituting Equation (8.3) in (8.2), we can similarly obtain the governing equation for the amplitude of the transonic 
potential. For highly oscillatory flows, characterized by the condition 

k » ll-MI 

where M is the local Mach number, the nonlinear term can be neglected [8.2]. The resultant linear transonic equation 

320 ,30      ,    , 
—^ - 2ik M2 -^ + k2 M2 0 = 0 
3y2 9x 

(8.6) 

is of parabolic type. 

The unsteady pressure coefficient can be expressed as 

2   d0' 
C^(x.y,t) = -— ^(x,y,t) (8.7) 

where 

d       /       3      3\ 

is the linearized total time derivative. Using 

C^ = Cp(x,y)ei"' (8.9) 

we obtain from Equation (8.7) the relation between the amplitudes of the pressure coefficient and the potential: 

Cp(x,y) = -2(—+ ikj0(x,y) (8.10) 
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Applying the operator (3/3x + ik) to Equation (8.4), we find that Cp satisfies the same differential equation, namely 

a^Cp   a^Cp acp 
fl-M^) + 2ikM2  + k2M2c„ = 0 (8.11) 

Similarly, for linearized transonic flows we obtain from Equation (8.6) 

a^Cp aCp 
 2ikM^ -—+ k^M^ Cp = 0 (8.12) 
ay2 ox 

In computing subsonic flows past airfoils it is more convenient to work with Cp, since pressure,unlike the potential,is not discontinuous 
across the (potential) wake. In supersonic flows this is not essential, since the regions downstream of the model have no influence on 
airfoU pressure distribution. 

For flows governed by the linear homogeneous equation (8.1) it is possible, in free air, to separate the thickness and lifting 
problems. If the airfoil thickness distribution is independent of time, than only the lifting problem, associated with the time-dependent 
camber f' = f' (x,t), is of relevance to the unsteady flow analysis [8.3]. For harmonic oscillations 

f' = f(x)e'"« (8.13) 

where f is the deflection amplitude. The thin airfoil boundary condition 

f^(x,0,t) = — -f'(x,t) (8.14) 
ay u„ dt 

becomes, using Equations (8.3), (8.8) and (8.13) 

30 / 3 \ 
^(x,0) = (^ + ikj f(x) (8.15) 

In the wind tunnel case, the separation of the unsteady lifting problem and the steady thickness problem is permissible, if additional 
conditions are satisfied: (1) the airfoil is located midway between the walls and (2) the wind tunnel boundary condition is linear 
homogeneous. Throughout this Chapter it will also be assumed that the turmel walls are rigid, i.e. their locations are independent of 
time. 

For solid walls, the time-dependent boundary condition is 

30'/      h   \ 
-^ (x,±-,t    = 0 
3y  \ '   2' / 3y 

Substituting Equation (8.3), we obtain in terms of the potential amplitude 

hN 

3y 

or from Equation (8.10) in terms of the pressure amplitude 

30 /      h\ 
-^ (x,±-) = 0 
3y \      2/ 

(8.16) 

3Cp.      h 

9y 

The slotted wall boundary condition 

(x,±-) = 0 (8.17) 

d  r , /      h   \ 30' /     h   \" 
-^0'(x,±-,t)±K-(x,t-,t) = 0 

takes similarly the form 

^^•^i)^^|(^'*i) = '^ *"'^ 

/      h\ ^^P /     h\ 
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The porous wall boundary condition for harmonically oscillating flows, as we have already observed in Chapter 2, is 

(^^^')^p(^-i)*'^(''-i) = ° («-2^^ 

The complex quantity 

R + iS (8.22) 

is the wall impedance, R = 1/P is the resistance and S is the reactance. 

8.2   Tunnel Resonance 

The phenomenon of transverse acoustic resonance between an oscillating airfoil and wind tunnel walls was discovered 
analytically by Runyan and Watkins [8.4], confirmed by W.P. Jones [8.5] and verified experimentally by Runyan et al [8.6]. 

Tunnel resonance does not exist in incompressible flow since the velocity of propagation of a disturbance is infinite. In a 
compressible fluid, however, a definite time is required for a signal to reach a distant field point and phase lag enters the picture. The 
resonance takes place if the oscillation frequency is such that the disturbances emanating from the airfoil and those reflected by the 
waUs form a standing wave pattern. In that case, at the position of the oscillating airfoil the normal velocity has a maximum amplitude 
and the pressure coefficient has a node, i.e. is of zero amplitude: 

Cp(x,0) = 0 -oo<x<~ (8.23) 

Accordingly, the theoretical airloads will vanish at resonance. This certainly is the most severe case of wall interference, we have 
encountered so far. Fortunately, pure resonance is in practice unobtainable because of the presence of damping factors such as the 
viscosity, wave scattering at the walls, finite length of the test section walls, etc. A typical example is shown in Figure 8.2, which 
contains experimental and theoretical data obtained in a solid wall test section [8.6]. The lift and pitching moment amplitudes show 
pronounced dips near the (first) resonant frequency, but do not vanish entirely. Similarly, the phase angle changes are less abrupt than 
predicted by theory. Nevertheless, these effects are still very pronounced and tunnel testing near resonant conditions should be avoided. 

For the soUd and open jet boundaries the resonant frequencies can be deduced from wavefront model shown in Figure 8.3. 
Since the standing wave pattern (formed by emitted and reflected waves) can take place only if the disturbances propagate in the 
direction normal to the walls, the angle of incidence 9 must satisfy 

sin0 = M„ (8.24) 

Denoting by a the velocity of sound, the velocity of propagation of the pressure disturbance in the direction normal to the wall is 

V a^ - u£ and the time needed for it to travel from the tunnel centre line to the wall and back is 

h 
t = ——== = — where ;3 = Vl - M^ (8.25) 

Va^ - U^      P^ " . . 

The resonant frequencies are then obtained from the condition that the emitted and the reflected waves meet on the tunnel axis in 
opposite phases. 

For solid walls, that do not change the phase of the wave on reflection, we obtain 

co„t = (2n - 1) TT , n = 1, 2, . .. 

that is 

k„ =  — = (2n-l)7r—-, n = 1,2,. . . (8.26) 

Equation (8.26) is the well known result obtained by Runyan and Watkins [8.4] and Jones [8.5]. 

For open jet boundaries the phase change on reflection is jr, so that 



134 

For ventUated walls, the phase change is more difficult to assess. As pointed out by Acum [8.7], the resonant frequencies can 
be determined in a simple way from the free vibration model; the theoretical background of this method can be found, for example, in 
Landau and Lif^itz [8.8]. 

Separating in Equation (8.11) the variables as 

Cp(x,y) = Y(y)e'» (8.28) 

we obtain for the function Y the ordinary differential equation 

y + X^Y = 0 (8.29) 

where 

X^ = -j3^s2 + 2M2sk + M2 k^ (8.30) 

For the homogeneous boundary conditions at - h/2 and h/2, Equation (8.29) has only a trivial solution Y = 0, unless 

X = X„ , n = 1, 2,. . . 

is one of the eigenvalues of the problem. 

Condition (8.23) of zero pressure amplitude on the tunnel axis yields 

Y = 0, y = 0 (8.31) 

and we find that the eigenfunction satisfying Equations (8.29) and (8.31) is 

Y = sinXy (8.32) 

Clearly, the formal separation of variables, Equation (8.28), represents the decomposition of the unsteady pressure field into plane 
waves, the quantities s and X playing the role of the wave numbers in the x and y directions. From Figure 8.3 

- = tan0 
X 

so that for the resonant slope, Equation (8.24) 

s„ = y X„ (8.33) 

Finally, substituting in Equation (8.30) and taking the positive root 

K = -^ (8.34) 

which is Acum's relationship [8.7] between resonant frequencies and tunnel eigenvalues. 

In the limit M„ ^ 0 we have k^ ^ °°, which confirms that resonance cannot occur in incompressible flow. As M„ increases, 
resonance gradually afflicts lower and lower frequencies. Thus, acoustic resonance between the airfoil and the tunnel becomes an 
important phenomenon at high subsonic speeds because it occurs at relatively low values of the reduced frequency. However, no con- 
clusion should be drawn from the very limit k„ -»• 0 as M„ ->■ 1 since, clearly, Equation (8.1) is not applicable to near-sonic velocities. 

The problem of determining the resonant frequency is thus reduced to finding the eigenvalues X„ for the tunnel section. For 
slotted walls, substituting Equation (8.28) in (8.19), we obtain 

Y-i-KY' = 0, y = i (^-3^) 

Inserting Equation (8.32), we find that the eigenvalues X„ are the roots of the transcendental equation 

(x„^) F -^ tan (x„^) = 0 (8.36) 
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where 

F = 
2K 

(8.37) 

is the nondimensional slot parameter. The points x„ = X^ h/2 are depicted in Figure 8.4 as the projections onto the axis of the inter- 
sections of a straight line y = - Fx with branches of the y = tan x function. 

In the limiting cases of solid and open jet walls respectively, 

(""i)'^ 

Substituting in Equation (8.34), we arrive at the resonance frequencies (8.26) and (8.27). 

For positive values of F the eigenvalues satisfy the inequalities 

(n-^).<X„^< (8.38) 

and hence are well separated. They can be calculated by the following iterative procedure: if V , satisfying the above inequality, 
represents an approximation to X„, then 

^r  = J[n^-atan(KXO] (8.39) 

is a better approximation. The graphical interpretation for n = 1 and j = 0 is shown in Figure 8.5; a proof of the (geometric) 
convergence was given by Fromme and Golberg [8.9]. Although Newton's method can be shown to converge slightly faster for large X„, 
it requires the evaluation of two functions at each iteration, so that the formula (8.39) will generally be more convenient [8.10]. 

An example of calculated resonant frequencies for M„ = \/3/2, h = 20, and three values of the slot parameter, K = °°, 1, 
and 0 (K in same length units as h) is given in the following Table. 

K = °° K = l K = 0 
(closed) (slotted) (open) 

k. 0.090690 0.165282 0.181380 

kj 0.272070 0.332586 0.362760 

kj 0.453450 0.502774 0.544133 

K 0.634829 0.675654 0.725519 

k5 0.816209 0.850637 0.906899 

As expected from inequality (8.38), the resonant frequencies for typical slotted walls (K = 1) lie between those for solid 
(K = °°) and open jet (K = 0). The disappearance of aerodynamic loads at the resonant frequencies can be demonstrated on the 
absolute value of the lift coefficient amplitude, |CLI, computed by Fromme and Golberg [8.9] for a flat plate undergoing a harmonic 
pitching motion between tunnel walls, see Figure 8.6. To show that resonance cannot occur in incompressible flow, the case M„ = 0 
is also presented. Whereas the behaviour of |CLI VS. reduced frequency is smooth for M„ = 0 with the three curves for K = °o, 1, and 0 
merging as the frequency increases, the behaviour of |CLI for M„ = \/3/2 is strikingly different. The closed wall solution begins with a 
relatively large value of |CLI at k = 0 and drops to zero at the first resonant frequency, kj = 0.090690. Then it increases to a 
maximum value of about 60% of its zero frequency value, drops again to zero at the second resonant frequency, kj = 0.272070, and 
so on. In accordance with the predictions in the above Table, a similar behaviour is evidenced for the ventilated wall conditions. The 
corresponding phase angles are shown in Figure 8.7. We observe 90° phase spikes at the resonant frequencies. The inconspicuous phase 
variations for the incompressible flow case indicate again the absence of resonance. 

Acum's method fails to produce resonant frequencies for porous walls, if the boundary condition (8.21) is adopted in its 
resistance form, that is with 

■ 1 
Z = R  = - 

In spite of some contradicting experimental evidence, it was for some time believed that porous walls are not subject to resonance. The 
dilemma was resolved by Mabey [8.11], who showed that resonance can be obtained if the porous wall is represented by the reactance 
boundary condition, i.e. taking 

Z = iS (8.40) 
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Inserting Equations (8.28) and (8.40) in (8.21), we obtain 

(s + k)Y + SY' = 0     ,     y = - (8.41) 

The substitution from Equations (8.32), (8.33) and (8.34) yields 

tan^Xn-j+S(3M„ = 0 (8.42) 

Accordingly, for porous waUs the eigenvalues are obtained explicitly as 

2 
Xn = -  [atan (- S|3M^) + n7r] (8.43) 

In the limiting cases of solid and open jet walls 

Hy ^4"i"-i^ 

"2 

from which, as before. Equations (8.26) and (8.27) are obtained. For porous wall, the eigenvalues are again expected to lie on the 
interval, given by inequality (8.38). 

Experiments with actual tunnel test sections indicate that the transmission of waves through ventilated walls is another factor 
affecting transverse resonance. Methods for prediction of resonant frequencies based on the acoustic interaction of the moving tunnel 
air and stagnant plenum air have recently been proposed by Mabey [8.11], [8.12] and Barger [8.13]. Without going into details, we 
mention that there are two distinct subsonic regimes of the resonant wavefront propagation. Since along the interface of the tunnel 
stream and plenum air the waves must have the same phase velocities, Figure 8.8, the following relationship holds for the angle of 
incidence 6 and the angle of refraction 6: 

a plenum 
 T - U„   =   
^i" ^ sin e 

If the speed of sound in the plenum is equal to that in the test section, apij,„„^ = a, we obtain 

— sin 6 
sin 6  =   (8 44) 

1 - M„ sin 0 ^       ' 

where 9 < 7r/2, that is 

sine < ;——- (8.45) 
1 + M^ "^       ' 

must hold. The substitution of the resonant angle, Equation (8.24), yields Mabey's condition [8.11] 

M„ < (V5 - l)/2 ^ 0.618 (8.46) 

If M„ > 0.618, total reflection of the resonant waves takes place. But even then, the wall does not behave entirely Uke a solid one: the 
phase change on reflection still takes place and the waves satisfying Equation (8.45) continue to refract, however none of them has the 
resonance slope. 

8.3   Eland's Method for Unsteady Subsonic Interference 

The problem of slotted wall interference on oscillating airfoils at subsonic speeds has been solved by Bland [8.15], [8.16] 
and extended to the porous wall case by Fromme and Golberg [8.17], [8.18]. 

The pressure boundary condition for the (upper) airfoil surface can be written as 

Cp(x) = -7(x) (8.47) 

The vorticity amplitude 7 is actually unknown here, but the solution for Cp will be used to provide an integral equation relating the 
pressure amplitude and the upwash amplitude 
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v(x) = ^(x,0) = ^—+ ikjf(x) (8.48) 

which is known from the prescribed deflection amplitude f. Since the pressure is continuous elsewhere and antisymmetric with respect 
to the X axis 

Cp (x) = 0, -1 > X > 1 (8.49) 

The condition Cp (1) = 0 is the Kutta-Joukowski condition for unsteady flow. 

Correspondingly, the boundary value problem to be solved for the slotted wall case is 

a'Cp a^Cp ,/3      V h 
■" ..._.,       - <x<oo, o<y<- (8.50) (x,y) + -^ (x,y) - MM — + ikj   Cp (x,y) = 0 , 

9x'' 9y 2 

/   h\        9Cp .   h\ 

^o ("•¥)" ^171"'i) = °'       -<-<- (8-51) 

I-7(x) , -1 < x < 1 

(8.52) 

0, -1 > X > 1 

Employing the streamwise Fourier transform 

Cp(s,y) = -^      f   e-'^''Cp(x,y)dx 
V2^ -i 

the above problem is reduced to the two-point boundary value problem 

82& 

where 

cf. Equation (8.30). The solution is 

  (s,y) - v^ C  (s,y) = 0, 0 < y < ^ 
8y2 2 

-    I  h\        S^Cp   ,  i,\ 

1 

Cp(s,0) = f   e-i«7(x)dx 

^2 = j32s2 _ 2M2 sk-M^k^ = -X2 (8.53) 

^     K^coshU--yj   +sinhU--yj 1 

Cp(s,y) = -—r  ^ —^ ^— ^ e--t7(i)dj 

V2^ K^cosh(p-) + sinh(^-) { 

Subjecting Equation (8.10) to the Fourier transform, we obtain 

Cp(s,y) = -2i(s + k)0(s,y) 
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so that, with the help of the inverse transform, 

v(x)  = T^(x,0) = — 
ay dy 

1        r        " 
        /     e'«0(s,i 
V27r      -^ 

,0) ds 

v/2Jr      -^ 

i       9Cp 

2(s + k)   3y 
(s,0) ds 

Accordingly, the equation for the upwash can be restated as 

v(x) = -^    j   K(x-?)7(?)dJ (8.54) 

where the kernel function (not to be confused with the slot parameter K) is given by 

°° Ki* sinh (v—) + cosh (i^—) 

K(x-J) = --       I     e'^C-O  
P      J 2(s+k) / h\ / h\ 

-oo Ki'coshli'—1 + suih (f — I 
\  2/ V  2/ 

ds (8.55) 

The integrand is indeterminate for v = iX„, where X„ are the eigenvalues satisfying Equation (8.36). From Equation (8.54) we readily 
verify that this is compatible with the resonance condition: considering the upwash to be definite, the vorticity (and hence loading) 
must vanish as K (x - J) ^ o°. 

For the porous walls at low frequencies, the boundary condition (8.51) is replaced by 

/ 3        \        /   h\     1  3*^? /   h\ 
<   X   <   oo (8.56) 

Going through the same procedure as before, the transform of the pressure amplitude is found to be [8.19] 

p cosh 

Cp(s,y) 

U^-y)|  + iP(s+k) sinh Uf-y)|       ^ 

L ^-^ ^ ^^     /   e-i«7(J)dJ 
V^ (/cosh (^i'-j + iP(s + k) sinh/v-j 

and the kernel function, to be substituted in Equation (8.54) 

K(x-t) .1       f is{x-f) . 
2(s + k) 

V sinh [v—] + iP(s + k) cosh [v — ) 

■cosh (f —1 + iP(s + k) sinh (i'~) 

(8.57) 

see Reference [8.17]. Examination of the denominator shows that it is nonzero if the porosity parameter P is real, which is indicative 
of the fact that resonance cannot occur. However, the situation changes if Equation (8.56) is replaced by the high frequency condition, 
i.e. if i/S is substituted for P. 

For a numerical solution of the integral equation (8.54) the singularities contained in the kernel functions need to be 
explicitly displayed. Unfortunately, the evaluation of the inverse Fourier transforms (8.55) and (8.57) is not an easy task. Using the 
method of residues and a rather arbitrary extraction of singularities. Bland [8.15] evaluated the slotted wall kernel (8.55) as 



1      ik K(x-0 =  r--log|x-|| 
x-J     32 
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+ -^ k [l + sign(x-J)] e-i'^fx-O 

1 + K k tanh (^i) 
K k + tanh ('i) 

-s.gn(x-J)s(-^j-— S(—-j 
iMik-— 

e        r 

|3h 
sinh 

x-f\ x-J /   x-f\ 
[IT   I        IT 
V    8h / /3h / /3h _ 

- 1 I 

sinh (•i^) 

ik 
log 

1 /   x-{\ 
 tanh [IT  
X-? V   2/3hy 

x-E 

+    e 1    log h(^) (8.58) 

where S is given by the infinite series 

K^)=E 
exp -hX„Vl exp (2n - 1) TT 

Ix-j| 

n=l 
1 + - 

2 

h^ 

1 + (KX„)^ 
1 + (a' hX„\ 1 

M„kV (2n - 1) IT 
(8.59) 

and 

S 

ds(^ 

V   /3h  /            |x-|| 
a  

/3h 

(8.60) 

As mentioned earlier, X„ are the roots of the transcendental equation (8.36) on the'interval (8.38). The series (8.59) and (8.60) 
converge at x = J; however they fail to converge if 

/M„k\2 

This corresponds to Acum's resonance condition (8.34). In all that follows we assume that we are not at a resonance point. 

Evidently, Equation (8.58) represents the decomposition of the kernel 

K(x-J) = Kc(x-J) + KL(x-J) + KB(x-t) (8.61) 

where 

Kc(x-{) 
x-f (8.62) 

is the Cauchy kernel. 

KL(X-?) = --log|x-J| 
fl2 

(8.63) 
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is the logarithmic kernel, and Kg (x - f) is the remaining, bounded part of (8.58). It is clear that the wind tunnel effect must be 
absorbed by Kg. In contrast to Equation (8.58), the evaluation of the imsteady porous wall kernel from Equation (8.57) remains an 
open problem, awaiting future research [8.18]. 

Special cases of the kernel are: 

1.     Steady Flow, Slotted Walls 

Substituting k = 0 in Equation (8.58), we readily obtain 

1      27r 
K(x-f) =  -- —sign(x-{)S 

x-5     /3h V   /3h   /    j3h 
sinh   TT I    V—— 

V    (3h / |3h. 

(8.64) 

For sohd walls, 1/K = 0, the eigenvalues satisfy 

and as a result 

A.— =  (n iTT 
^2       V      2/ 

.,(\^'i 
\   8h   / 

Consequently 

K(x-J) 
smh (-1^) 

in accordance with Equation (7.73). 

2.     Steady Flow, Porous Walls 

Substituting k = 0 in Equation (8.53), it follows 

Inserting it together with the factor 

V = ^s 

2 P 
T = — atan —, 0 < r < 1 

in Equation (8.57), we obtain 

K(x-J) = --       r    e'^f"-?* tanhM--s +i^r) ds 

which does not exist as an ordinary (Lebesgue or Riemann) integral; instead it must be regarded as a distribution [8.17]. Only under 
this condition does it reduce in the limit h ->■ oo to the Cauchy kernel 

Kc(x-J) = --       f    e''<'<-« sign(s)ds = —- 
2i      J X   5 

In contrast, the wall interference part 

Kw(x-?) = K(x-f)-Kc(x-J) 

exists as the Cauchy principal value of an ordinary integral. It can be shown [8.17] that the complete kernel is 
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K(x-J) = 
(3h 

sinh ('li) 
(8.65) 

in accordance with Equation (7.72). This example is indicative of difficulties which may be encountered in utilizing the general, porous 
wall kernel in its integral form (8.57). 

3.     Unsteady Flow, Free Air 

The kernel covering this situation is that by Possio [8.20], [8.3], [8.21]: 

Trk 
KF(X-J) = e-'^C-O • 

2|32 

k(x-£) 

iM„ sign(x-l) Hf>( 
M„k|x-J|\ /M_k|x-5| 

2iP       /l + /3\ V        «2      m/^"^^^^ , 
(8.66) 

where 

denote the Hankel functions of the second kind of order £. By the subscript F we indicate that Possio's kernel is a free air kernel. 
However, the limiting process h ^ oo in which Equations (8.55) and (8.57) reduce to Equation (8.66) has yet to be demonstrated. In 
any case, Possio's kernel in the present form is not suitable for numerical computation. Its singularities are not explicitly displayed, it 
is indeterminate for M„ = 0 and it contains an integral with variable upper limit. Following an extensive analysis, Fromme and Golberg 
were able to reformulate it as 

KF(x-f) = -—+Ki(x-J)log|x-f| + K2(x-f) (8.67) 

where 

Ki(x-S) = -—e-"'"'-»Fi(x-J) 
fl2 

(8.68) 

K2(x-J) = -e-"=(''-«F2(x-J) (8.69) 

are analytic (differentiable) functions of the argument x- f. The detailed expressions for the functions F^ and Fj are rather lengthy 
and can be found in References [8.17] and [8.21]. 

From Equation (8.67) it can be inferred that for the wind tunnel case the kernel is of the form 

K(x-i) =  Kp(x-{) + Kw(x-J) 

^-i 
+ Ki (X-J) log |x-J| + K2(x-^J) + Kw(x-J) (8.70) 

where K^ (x - {), representing the induced effect of the walls, is an analytic function. 

For incompressible flow, M„ ^ 0, the Possio kernel reduces to the Kussner-Schwarz kernel 

KF(X-J) = ^ -ike-"=<''-» |Ci[k|x-{|] + iSi[k(x-{)] + — (8.71) 

Bland [8.16] proved that also the slotted wall kernel (8.58) reduces to this expression, substituting 1/K = 0 and M„ = 0, and taking 
the limit h -»■ oo. 

Representing the cosine and sine integrals by the expansions 
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where 

is Euler's constant, we obtain [8.17] 

E(- If Z^n 
  
(2n) (2n)! 

n=l 

—!^  
(2n + l)(2n + l)! 

n = 0 

7 = 0.577215 .. . 

K(x-g) = ike-"'"'-" log Ix-tl-ike-i'^C-" 
x-J 

log k + 7 + — + 
■^    [ik(x-; 

2-r       (n) (n 
[ik(x-g)]° 

)! 
n=l 

(8.72) 

Clearly, this result fits much better the kernel decomposition according to Equation (8.70) than (8.61). 

To enforce the KuttaJoukowski condition (8.49), Bland introduces the pressure factor 

i//(x) 
P7(x)     /1 + x 

2       V 1-x 
(8.73) 

which transforms the integral equation (8.54) to 

^'^> = i /Vr^^^'"^^^^*^ df (8.74) 

In his collocation method the pressure factor is expanded in pressure polynomials, Equation (7.61), and the integral equation (8.74) is 
reduced to a system of linear algebraic equations 

N 

E 
n = l 

AN     „N   =   „N m = 1, ...,N (8.75) 

where 

cs = v(xri) (8.76) 

and 

<" = i /Vr7|^(^:s"-0^n«)df (8.77) 

As collocation points xJJ* ^ selected are the N zeros of the upwash polynomial Vj^^. ^, Equation (7.67). Following Equation (8.61), the 

collocation matrix (8.77) is split as 

AN    = CN   + L^   + B^ mn mn mn mn (8.78) 

where, according to Equations (7.79) and (7.81) 

(-,N     =        / N + l\ (8.79) 
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(8.80) 

The quadrature points if*^ are obtained from Equation (7.82). The contribution of the logarithmic kernel, which does not occur in 
steady flow, is evaluated in closed form using the auxiliary integral [8.15] 

Accordingly 

TT        j     V  1 + i 
log|x-J|   ,//„(?) dt  = 

2^n + lW+(--log2) v„(x). 

Vn+l(x)        V„(x) V„.i(x) 

2n 2n(n-l)     2(n-l)   ' 

n = 1 

n > 2 

mn 

_rn.:(xrv(|-i°g2)v„(xr') 

v„.i(xro -n(xro v„_i(xro 
2n             2n(n-l)         2(n-l) 

n =  1 

n > 2 

(8.81) 

The weakest part of the collocation method is the approximation introduced by the Jacobi-Gauss quadrature formula (8.80). 
Comparing Equations (8.61) with (8.70), we see that the function 

KB(X-J) = ^   [l-e-i''(''-»Fi(x-t)]log|x-il +K2(x-?) + Kw(x-i) 

while continuous, contains singular terms of order (x- J) log |x- J|. Such terms will not be integrated accurately and will result in 
convergence (N -^ ~) delay due to quadrature error in the collocation matrix. On the other hand, by splitting the kernel according to 
Equation (8.67), all singularities can be treated properly. For further details the reader is referred to References [8.17] and [8.21]. 

Once the Fourier coefficients a^ are known, the airfoil loading and force coefficients are evaluated, as for steady flow, from 
Equations (7.83) to (7.85). The aerodynamic work matrix, representing the work done on the airfoil as it deforms in mode (m) against 
the pressure due to mode (n) is 

W I    J   f<™>(x) C(»'(x)dx 
-1 

where the overbar denotes complex conjugation'. 

Replacing the pressure amplitude by the pressure factor (8.73), we obtain 

(8.82) 

W = _i   f [HE 
/3 J y 1+K 

f<")(x)  .//("> (x) dx 

Expressing the deflection and the pressure factor in terms of the pressure polynomials, i.e. 

f<™)(x) = J2  h^"'^,(x) ,    hj-) = i    JJYH ^'"^^^^ ^'^^^ '^^ 
r=l - 1 

(8.83) 

and 

^(")(X)   =   J2    <"'^sW   .      aW  = 1      J^i_i   ^(n)(J)   ^^(J) dj 
s = l 

(8.84) 

*The use of the complex conjugate of the pressure amplitude is necessitated by the definition of the work matrix as an inner (scalar) product. 
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we obtain 

W„ E hf™) ^, (x) E ,(n) •/-sW dx 

- - j E 'f m)   g(n) 

r=l 

(8.85) 

In the special case that the deflection modes are represented by the pressure polynomials 

f(™'(x) =   i//„(x) (8.86) 

it follows from the ortogonality properties (7.60) 

and 

hj") = 5 r mr 

=,(-) (8.87) 

This simple result is due to Fromme and Golberg [8.17]. 

8.4   Miles' Method for Unsteady Supersonic Interference 

It is assumed that the supersonic flow is governed by the linearized equation (8.4) and that the thin airfoil is mounted 
midway between two parallel walls, a distance h apart. The leading edge is at the origin of the co-ordinate system, Figure 8.1 b). It is 
remarked at the outset that the supersonic tunnel test is interference free if the leading edge Mach waves reflected from the walls 
intersect downstream of the airfoil. Since the Mach angle is given by 

sm n 
M„ 

(8.88) 

the interference free condition is 

where 

c < h cot M = B h 

B = VM^-I (8.89) 

In the unit semichord co-ordinate system we have c = 2, so that the interference free condition reads 

h > (8.90) 

Unless this condition is satisfied (large h or large M„) or unless the porosity of the walls is such that the incident waves cancel [8.22], 
[8.23], the reflected waves will impinge upon the aft portion of the airfoil and induce disturbances which invalidate the simulation of 
free flight conditions. In wind tunnel practice, the presence of supersonic interference is often regarded as unacceptable, but it is still 
of some value to study it, particularly since it may not always be possible to satisfy the interference free condition. 

Because of the supersonic zones of influence and dependence, given by the character of Equation (8.4) at M„ > 1, the 
problem of wall interference at supersonic speeds is less difficult to solve than that at subsonic speeds. To be more specific, we can 
directly employ the airfoil boundary condition (8.15), knowing that the flow is undisturbed upstream of the leading edge Mach wave 

X < Blyl 

and that the upwash downstream of the trailing edge does not influence the airfoil pressure distribution. As a result, the surface pressure 
can be obtained explicitly via an integral involving the deflection. This is in contrast to the subsonic case, where the dependence of 
pressure on deflection is implicit, leading to the solution of an integral equation. 
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MHes' method [8.24], originally presented for solid walls, was applied by Drake [8.19] to the low frequency porous wall 
case. The boundary value problem to be solved is 

B^ + 2ikM2 —-k^M^^  = 0, 
3x2 3X " gy2 

<x<oo, 0<y< (8.91) 

(^^*)*(4)"?   I    (4)=°' 4<^< (8.92) 

30 

Vy' x,0) = v(x) = (^ + ikj f(x) , 0 < X (8.93) 

i(x,y) = 0, X < By (8.94) 

30 30 
7- (x,y) = ^ (x,y) = 0 , 
3x 3y 

X < By (8.95) 

The form of initial conditions (8.94) and (8.95) naturally invites the Laplace transformation 

0(s,y) = £ {0(xjr)}  =   j    e-^'' 0(x,y) dx (8.96) 

For a pitching motion of small amplitude a about x = XQ 

f(x) = -a(x-xo) (8.97) 

from which 

v(x) = (^ + ik) f(x) = -a [l + ik(x-Xo)] (8.98) 

and 

v(s) = £ {v(x)|  = -a 
1          /I     ^0 
- + ik  
S \=2        S 

(8.99) 

Accordingly, the subsidiary two-point boimdary value problem is 

3^0 ,   A h 
 (s,y)-A2 0(s,y) = 0, 0<y<- 
ay2 2 

,     .,     - /   h\     1  30 /   h\ 

30 

ay 
(s,0)  = v(s) 

where 

A^ = B^s^ + 2iM2sk-M2k2 (8.100) 

The solution is 

<^(s,y) = -g(s,y) v(s) (8.101) 



146 

where 

A cosh 

g(sj) =  - 
A 

[A (^ - y)J  + P (s + ik) sinh |A (^- y)l 

Asinh (A —1 + P(s + ik) cosh (A—J 

For ideal slotted walls the wall boundary condition (8.92) is replaced by 

/   h\ 9(/i /   h\ h 
0 (x,-) +K -^(x,-) = 0, B- < X < <» 
^ V '2/ 9y V    2/ ' 2 

The solution of this problem is again of the form (8.101), where 

sinhlA(^-yj    +KAcosh   A^^-y) 

cosh f A — j + K A sinh (A — j 

Taking the limit P ^ 0 in Equation (8.102) or K ->■ <» in Equation (8.104), we obtain Miles' solid wall expression 

^cosh[Ag-y)] 

g (s,y) 

g(sjf) = - 
sinh (A — (4) 

Similarly, taking the limit P -> oo or K ->• 0 we recover Drake's open jet result [8.25] 

g(s,y) = - 
A 

1 ■"'■[*(¥''')] 

(4) cosh 

If h -> oo, the above formulas reduce to 

g (s,y) 
;-Ay 

which is the expected free air limit [8.26]. 

Applying now the convolution theorem to Equation (8.101), we obtain in the physical plane 

(8.102) 

(8.103) 

(8.104) 

(8.105) 

(8.106) 

(8.107) 

>(x,y) =  -   I   g(x-J,y) v({) df 

0 

where the influence function 

g.(x,y) = X-' {g(s,y)} 

is the inverse Laplace transform of g. 

In the free air case, the inverse transform of Equation (8.107) yields [8.26] 

(8.108) 

(8.109) 

1   ~' " 
g(x,y) = -e     "        Jo 

M„ 
k  Vx^-B^y^ H(x-By) 

where Jn is the Bessel function of the first kind of zero order. The Heaviside function "0 

H(z) 
< 0 

1     ,     z > 0 

(8.110) 
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nullifies the influence function in the region in front of the Mach wave passing through the point x,y in accordance with the physical 
concept of the zone of dependence. If y > 0, the upper limit of the integral (8.108) is effectively reduced to 

J = x-By = x-y cot/i 

Of course, if x < By, the point is outside the domain of airfoil influence. 

Expressing the hyperbolic functions of Equation (8.105) in exponentials, expanding the denominator in a geometrical series, 
and inverting it termwise. Miles [8.24] and Drake [8.25] obtained for the solid wall and open jet cases respectively 

-ik — 

g(x,y) = - e       B 
D 

M„ 
k  Vx^ - B^ y2 

B2 
H(x-By) 

z +    7      e" J( 
M. 

k  \/x2-B2(nh-y)2 H [x-B(nh-y)] 

M, 
k  Vx2-B2(nh + y)2 

B^ 
H[x-B(nh + y)] (8.111) 

where 

II      ...      closed walls 

-1      ...      open jet 

The single term is the free air influence function (8.110) and the sums are recognized as its images at 

y =  ± nh     ,     n = 1, 2, . . . 

We see that the open jet images differ from solid waO images by the alternation of signs. 

The Heaviside functions cut off the contributions downstream of the supersonic zone of dependence, as illustrated in 
Figure 8.9. Accordingly, only a finite number of images affect the flow at any given point x,y. In particular, if 

X < B(h-y) 

the point is free of wall interference. 

Inverse transforms of Equations (8.102) and (8.104) are not known and the method of images itself does not seem to offer 
any simple hints. However, in order not to disappoint the reader entirely, we mention that low frequency approximations (discarding 
the terms of higher powers of k) can be worked out as demonstrated by Drake [8.19]. In fact, Equation (8.92) is suitable as a low 
frequency boundary condition anyway. For slotted walls, whose application in supersonic test conditions is less typical, the influence 
function has not yet been evaluated. 

From Equations (8.10) and (8.101) we obtain the transformed pressure coefficient amplitude 

Cp(s,0) =  2(s + ik) g(s,0) v(s) 

The actual pressure coefficient amplitude is obtained as the inverse Laplace transform 

. Cp(x,0) = £-1  {Cp(s,0)} 

or, using Equations (8.10) and (8.108), as 

(8.112) 

(8.113) 

Cp (x,0) =  2 ^—+ ik)   J   g(x-|,0) v(J) dj 

X 

= 21im [g(x-J,a) v(J)] +2  j      — g(x-i,0) + ikg(x-J,0)    v(|) dj 
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Using the limit 

finally 

Um     g(x-J,0) = lim   sg(s,0) = lim   (^) = - 

C  (x,0) = - v(x) + 2 I — g(x-J,0) + ikg(x-J,0) 
ox 

v(f) dj (8.114) 

The first right hand term of Equation (8.114) is the Ackeret quasi-steady result, i.e. the result obtained from the instantane- 
ous upwash on the basis of steady flow theory (thereby neglecting all time lag effects). The unsteady and wall interference effects are 
obviously absorbed by the integral term. 

The lift and pitching moment amplitudes can be obtained as inverse Laplace transforms, using the transformed pressure 
coefficient amplitude (8.109). Recalling that the airfoil chord length is c = 2 and that Cp (x,0) represents only a half of the pressure 
jump across the airfoil, we have for the lift coefficient amplitude 

I   Cp(x, 0) dx 

0 

Cp (s,0) 

x = 2 

(8.115) 

Similarly, the amplitude of the pitching moment (about the point x = XQ) is 

2 

:^M - - 2  J   (=^0 -X) C.(x,0)dx = 7("°-s) Cp (s,0) (8.116) 

As noted by Savkar [8.27], the Laplace transform (8.96) is also a suitable means for solving the unsteady transonic 
interference problem, governed by the linearized equation (8.6). In this (parabolic) case we have a single family of characteristics 
x = const., and the problem can be considered undisturbed ahead of the leading edge characteristic x = 0. Thus the porous wall 
boundary value problem is obtained from that described by Equations (8.91) to (8.95) by taking the limit B ^ 0, but allowing M„ to 
depart slightly from unity. Accordingly, from Equation (8.100) 

A2 = 2iM2 sk -M^ k^ (8.117) 

The transformed potential amplitude is again given by Equations (8.101) and (8.102). The same type of interpretation applies also to 
solid, open and slotted wall results. 

The transonic counterparts of Equations (8.110) or (8.111) can be obtained using the asymptotic formula 

-1" 
4 

Jo(z) ~ \   — cosiz--) =   (e'^ + ie-'M 

where the (large) argument z stands for 

M„ 
z = k  Vx^ - B^ (nh ± y)^  =:: 

kM. 

-i»'(^)" 

Special care must be taken in the evaluation of the pressure distributions, since the supersonic pressure coefficient (8.114) does not 
possess a limit for M„ = 1; for more discussion see Reference [8.2]. Other interesting features of linear transonic interference are 
described by Savkar [8.27]. 

8.5   Platzer's Method for Low Frequency Supersonic Interference 

As indicated in Section 8.4, the Laplace transform formulation of supersonic interference is very elegant, but for ventilated 
waUs the evaluation of the influence function by inverse transform appears to be complicated even in low frequency approximations. 
The method of characteristics is an obvious alternative, whose practicality has been demonstrated on ventilated walls by Platzer and 
Pierce [8.28], utilizing the technique developed earlier by Teipel [8.29]. The procedure is entirely numerical, but Platzer [8.30] 
subsequently showed, that a closed-form estimation of supersonic wall interference is possible for low frequencies, by adapting Sauer's 
elementary solution [8.31]. Platzer's method is well suited for investigating the wall interference effect on stability derivatives in 
supersonic flow, but is feasible only for the porous and not the slotted wall boundary condition. 
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Considered is again the airfoil boundary value problem of Equations (8.91) to (8.95). For sufficiently small reduced 
frequencies it is permissible to represent the potential amplitude by its first order approximation 

0 (x,y) = (^W'(x,y) + k 0(1'(x,y) (8.118) 

where 0<°' and 0'1> are understood not to be fimctions of k. Substituting in Equation (8.91) and separating the zero and first order 
terms in k, we obtain 

, 32^(0)     32rf,(0) 
B^ i— = 0 (8.119) 

3x2 gy2 

B2—!^ ^1_+ 2i(B2 + l)^ = 0 (8.120) 
3x2 ay2 3x . - 

Similarly, the porous wall boundary condition (8.92) splits into 

/   h\      1  3(/.(0) /   h\ h 
(^'ij"?-^(^'i) = °      '      B-<x<oc (8.121) 

30(0) 

3x 

30(1) /   h\      1  30(1) /   h\ ,„, /   h\ h 
(8.122) 

P     3y 

Assuming that the airfoil is a flat plate undergoing pitching motion of amplitude a around the point Xg.O, the deflection amplitude is 

f(x) = -a(x-xg) 

and the airfoil boundary condition (8.93) becomes 

30 

3y' 
— (x,0) = -a-ika(x-Xg) 

Accordingly 

30(0) 
g     (x,0) = -a (8.123) 

30(1) 
g     (x,0) = -ia(x-Xo) (8.124) 

Sauer [8.31] has shown that the general solution of the system of hyperbolic equations (8.119) and (8.120), which takes the 
Initial conditions (8.94) and (8.95) into account, is 

0(0) (x,y) = p(z) (8.125) 

0(l)(x,y) = i   q(z) + ^B + -jyp(z) (8.126) 

where p and q are arbitrary, twice differentiable functions of the argument 

z = X ± By + C (8.127) 

and vanishing for all z < 0. The plus or minus sign depends on the famUy of Mach lines (characteristics) along which the disturbances 
propagate; the constant C serves to fix the upstream boundary of the supersonic zone of dependence. 

As illustrated in Figure 8.10, the flow region above the airfoU is divided into zones n = 1, 2, 3, . . . , bounded by the airfoil, 
the wall, and the repeated reflections of the leading edge Mach line. By the linear superposition principle Sauer's solutions (8.125) and 
(8.126) in the nth zone can be written as 
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where 

0»>(x,y) 

0»'(x,y) =   ^  Pj(Zj) 

i = i 

n n 

(8.128) 

(8.129) 

Zj  = X + (- ly By - - 
l-(-l)i 

Bh (8.130) 

As may be verified in Figure 8.10, the straight line corresponding to the value Zj = 0 defines the upstream Mach-line boundary of the 
jth zone. 

The functions p: and q: can be determined consecutively by satisfying the airfoil boundary conditions in the odd-numbered 
zones and the waU boundary conditions in the even-numbered zones. It can be shown that 

Pj(^j) = ^^ (8.131) 

qj'(V = -- (bjZj+Cj) (8.132) 

where a:, b:, and C: are constants. Hence, pj and qj are obtained by simple integration . 

Starting with the airfoil boundary conditions (8.123) and (8.124) in the interference-free zone 1, we obtain [8.31] 

Pi(zi) = B ^i (8.133) 

qi(zi) = BI^^''^^) (8.134) 

where 

Zj  = X - By (8.135) 

Satisfying the porous wall boundary conditions (8.121) and (8.122) in zone 2, we similarly derive 

a B-P 
(8.136) 

q2(z2) 
1 1 

_(B + P)2     2B2_ 

,     B-P B-P 
Zt   +       Xn  Z-,   +  ■ 

2 T> J. D        VI 
(B.i)h = (8.137) 

where 

Zj = X + By - Bh (8.138) 

Again, satisfying the airfoil boundary conditions (8.123) and (8.124) in zone 3, we derive 

a  B-P 
(8.139) 

*For the slotted wall boundary condition this does not apply, malcing Platzer's method inapplicable. 
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q3(z3) = -: 
(B + P)2     2B^ 

2     B-P B-P 
Z,  +   XA Zo  + — 

^     B+P    °   ^     B 
— (B + -)h! 
+ P V     B/ 

(8.140) 

where 

Z3 = X - By - Bh (8.141) 

This result, which takes into account just one reflection from the wall, applies to the airfoil segment 0 < x < 2Bh, but from 
Equations (8.131) and (8.132) it follows that the process can be continued ad infinitum. 

Using Equations (8.10), (8.118), (8.128) and (8.129), we obtain for the amplitude of the pressure coefficient at y = 0 

Cp (x,0) = - 2  2] P] - 2ik 2   [Pi (^ - ^«^) ^ "li' (^ - ^ ^4 
j = l j = l 

(8.142) 

where n is an odd integer denoting the number of the zone in which the point lies: 

n-1 n+1 
 Bh < X <  Bh 

2 2 (8.143) 

The value of pj, since it is always a constant, is written without an argument. 

The lift coefficient amplitude is 

CL = -   J    Cp (x,0) dx = a [c5„ + ik (cj, + cji)] (8.144) 

where 

2     n 

0   j = i 

dx (8.145) 

2    n 

!JEM-^B')-;(.-^>^)] 
0   3 = 1 

dx (8.146) 

are the stability derivatives for the lift force [8.32]. 

Similarly, the amplitude of the pitching moment coefficient is 

CM = 2   J    Cp (x,0) (X - xo) dx = a [c„, + ik (c„, + c^^)] (8.147) 

where 

j=l 

(8.148) 

^   I   (x-xo)^]   [pj(--^Bh)^<5U"-^^ 
0 j = l 

dx (8.149) 

are the stability derivatives for the pitching moment. 
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Similar low frequency expressions for the stability derivatives are also obtainable from the Laplace-transform results of 
Miles [8.24] and Drake [8.19], [8.25], however with considerably bigger analytical effort. Comparisons of various theories and sample 
calculations can be found in Reference [8.30]. 
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Fig. 8.2    Resonance in a solid wall test section 
(adapted from Ref. [8.6]) 

fy 

Fig. 8.3    Propagation of plane waves at resonance 
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Fig. 8.4    Roots of Fx + tan X = 0 
(adapted from Ref. [8.9]) 
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9.0 EFFECTS OF SIDE WALL BOUNDARY LAYER ON TWO-DIMENSIONAL TESTS 

9.1 Introduction 

In two-dimensional wind tunnel tests the airfoil model is usually mounted between two opposing solid walls, here for 
convenience called side walls. Ideally, then, we have a two-dimensional channel that provides flow uniformity across the span of the 
model. This ideal condition, however, carmot be realized in practice because of the presence of boundary layers on the side walls. 
The local flow at the junction of the model and the side wall becomes fully three dimensional due to the interaction of the boundary 
layer vrith the model. This local interaction, unfortunately, has far reaching effects. It does not only change the local spanwise load 
distributions, but also causes early separation over the rear portion of the airfoil. The rapid variation of the side waU boundary layer 
displacement thickness induced by the pressure field of the airfoil generates additional perturbation on the flow field about the airfoil. 
These effects cause the flow to deviate from the ideal two-dimensional conditions and cause errors in the measured data. Therefore it is 
necessary to control the boundary layer development so that these interaction effects can be minimized. For weak interaction without 
boundary layer control, post-test corrections must be applied to reduce the data to that of an equivalent two-dimensional condition. 

9.2 Three-dimensional Flow at the Wing-WaU Junction 

The side wall boundary layer has in most cases a long development length before entering the model test region and is 
therefore fully turbulent, with an appreciable thickness. For an empty timnel the side wall boundary layer behaves like that of a flat 
plate and the growth of the boundary layer along the wall can be well predicted. The test section walls may be adjusted, if required, to 
compensate for the displacement effect. When a model is mounted in the test section, a pressure field is generated by the flow over the 
airfoil. Near the model the lateral pressure gradient is of the same order as the longitudinal one and a fully three dimensional flow 
develops. 

At the leading edge region of the model the boundary layer at the wall sees the nose of the airfoil as a blunt 
protuberance [9.1]. The inviscid streamline past the round nose is highly curved and thus induces strong cross-flow normal to its 
direction. Away from the nose region the lateral pressure gradient is reduced and the limiting streamline (surface streamline) turns 
back gradually into the external inviscid stream direction. The process causes the limiting streamlines to converge forming a vortical 
free shear layer which separates from the wall [9.2]. This type of three^limensional separation has been well studied for both laminar 
and turbulent flow [9.1]. For the case of flow past an airfoil-wall junction, excellent flow visualization of the limiting streamlines 
pattern can be found in the works of East [9.3], Shabaka [9.4] and Barbar [9.5]. The separated vortex sheets from the nose region 
roU up into a vortex pair wrapping around the airfoil-waU junction at both sides of the model. The extent of the vortex, however, is 
within the thickness of the boundary layer [9.3], [9.4], [9.5] and does not affect appreciably the boundary layer thickness at the 
region of separation. However the vortex pair energizes the boundary layer along the airfoil-wall junction downstream and at high lift 
condition, this favourable effect delays the separation at the side wall induced by the pressure recovery of the airfoil [9.5]. 

Since the side wall boundary layer is much thicker than that on the model, it is more prone to separate when facing the same 
adverse pressure gradient generated at the rear portion of the airfoil. Separation cells formed at the airfoU-wall junction can be observed 
while the pressure gradient is not yet severe enough to cause separation of the boundary layer over the model [9.5]. Barbar found that 
the vortex formed from the threeKlimensional separation at the nose energizes the sidewaU boundary layer downstream and delays the 
early separation. He showed that a thick boundary layer generating a large vortex had a small separation cell, while a thin boundary 
layer with a weak vortex had a much larger separation region. Thus the intersection drag loss is greater for a thin boundary layer than 
a thicker one. These observations were adopted by Jacobs in the derivation of a semi-empirical relation for the correction of drag 
measurements for an airfoil at incidence [9.6]. It should be noted, however, that Jacobs' correction apphes to measurements at 
relatively low Reynolds numbers. The effect may not be so severe for high Reynolds number flows commonly used in tests with 
modem wind tunnels. An example of the drag correction is shown in Figure 9.1. The Reynolds number was 0.33 million for both 
NACA data and the DRL/PSU tests. The Jacobs' correction formula is also shown in the figure. 

The three-dimensional boundary layer flow at the airfoil-wall junction also distorts the flow over the airfoil locally and thus 
changes the lift distribution for the portion of the model submerged in the boundary layer. This has been noted in the early experiment 
of Cowley and McMillan [9.7] and investigated in detail by Mendelsohn and Polhamus [9.8]. Both reports show reduction of spanwise 
loading as the wall is approached. The latter indicates that while the loss of the average load is small, the local spanwise load could be 
reduced by ten percent at the wall. At high angles of attack, separation at the airfoU-waU junction destroys the spanwise uniformity of 
the flow and is clearly indicated in the variation of the pitching moment along the span of the model. 

For low speed flows, if there is no separation at the side wall, the airfoil-waU junction induces mainly losses in the form of 
additional drag and has only small effect on the average load measurements. However, with separation cells forming at the junction, the 
flow over the model could be so distorted that no "correction" can be reliably derived. This is particularly true for models with low 
aspect ratios as usually employed in facilities specially bmlt for two-dimensional tests. For this type of flow, the only mean to establish 
a proper testing condition is to control the boundary layer development. A more detailed discussion on flow controls will be given in 
Section 9.4. 

9.3 Boundary Layer Displacement Effect 

As discussed in the last section, three-dimensional boundary layer flow is induced near the airfoil-wall junction by the 
pressure field generated by the model. Because of the slendemess of the airfoil shape, the curvature of the external streamlines 
decreases rapidly as the lateral distance increases. The cross-flow in the boundary layer is therefore already greatly reduced a small 
distance away from the airfoil. The pressure gradient along the streamline, however, varies rapidly within the extent of the chord and 
causes drastic changes of boundary layer thickness, which effectively alters the local width of the two-dimensional channel, causing 
local expansion or compression of the flow. This is particularly severe at transonic speeds, since the flow is extremely sensitive to small 
changes of the solid surface shape about which it passes. A detailed study of the side wall boundary layer effects at transonic speeds 
was conducted by Bemard-Guelle [9.9], [9.10]. It is shown, in contrast to the low speed observations discussed in the previous section, 
that the changes of average load and surface pressure distributions on the model depend strongly on the thickness of the incident 
boundary layer on the side wall. The reduction of normal force is found to be linearly proportional to the boundary layer thickness. 
The proportional constant assumes a near constant value for subcritical flow, but the value increases rapidly as the flow becomes 
supercritical. The latter is due to the movement of the shock at the upper surface of the model, where the flow is locally supersonic. As 
the boundary layer thickens, the shock moves forward and the section lift is further reduced. 

The variation of the displacement thickness of the side wall boundary layer around an airfoil in transonic speed has been 
calculated by Chan [9.11] and is shown in Figure 9.2. The depression near the leading edge is due to the expansion of the flow around 
the nose. The adverse pressure gradient at the rear portion of the airfoil causes the rapid thickening of the boundary layer and may lead 
to early separation as discussed in the proceeding section. The displacement effect can be considered as a distribution of sources at the 
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surface [9.12]. The perturbation to the flow fleld due to these sources can, in principle, be evaluated. For a narrow working section 
this displacement thickness variation effectively changes the local width of the test channel and may locally speed up or slow down the 
flow about the model. The thinning of the expansion side and the thickening of the pressure side of the boundary layer, for example, 
would amount to a decrement of lift, as analysed by Winter and Smith [9.13]. 

A global analysis of the effect is given by Bamwell [9.14] and apphes to subsonic or supersonic flows. The concept was later 
extended to the transonic range by Sewall [9.15]. 

In Bamwell's analysis [9.14], the changes in effective width of the test section is included in the continuity equation of the 
channel flow 

9u     3v 
(1-M^) —+ 

9x     6y 

2u dS_ 
(9.1) 

where b is the width of the test section and 5* the boundary layer displacement thickness. By observing that for a thick boundary 
layer with a long upstream development, the variation of the displacement thickness is dominated by the local pressure gradient [9.16], 
the momentum integral equation provides a direct relation for the growth of the boundary layer and the local velocity gradient as 

35* 35 /I       A  6    3u 

3x V      H        /   u   3x 
(9.2) 

The continuity equation, including the boundary layer effect, becomes 

,     28   /       1        A 
1 -M^ +  (2 + --M^l 

b   \      H        / 

3u    3v 

3x     3y 
(9.3) 

For subsonic linearized flow, the expression in the square bracket of Equation (9.3) amounts to an effective change of free-stream 
Mach number, 

M = M^ (2a-M^) 
25* 

b 
(9.4) 

The change of normal force can then be related to the change of Mach number by the Prandtl-Glauert rule, 

!Cn =i3C„ (9.5) 

where 

(l-M^)'''"      and     j3 =   (l - M^)"'^ 

Cn is the nearly two-dimensional normal force coefficient with side wall boundary layer and C„ the coefficient without boundary 
layer. Reasonable correlation of the ONERA data [9.9], [9.10] is obtained with the similarity rule as shown in Figure 9.3. 

For transonic flows Sewall [9.15] applies von Karman's transonic similarity rule to correlate the free stream Mach number 
with and without side wall boundary layer, 

M   _   M 
(9.6) 

= 1x54 
where (3 =   (l - M^)   . The double bar denotes the condition without boundary layer. The normal force and the drag coefficients can 
then be correlated as 

(9.7) 

Figure 9.4 shows the improvement in correlations for the normal and drag force coefficients and shock locations with Mach 
number when the above transonic similarity rule is applied. These results clearly indicate that the dominating effect of the sidewall 
boundary layer can be attributed to the displacement thickness. Taking averaged values for the boundary layer properties in the region 
around the airfoil, the change of the free stream Mach number due to the effective variation of the test channel width can be evaluated 
if thickness of the incident boundary layer is known. The scheme can readily be incorporated into programs for post-test estimations 
of sidewall interferences [9.17]. 
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9.4   Boundary Layer Control by Suction 

With no severe separation occurring at the side wall, the local three-dimensional flow at the airfoU-wall junction and the 
displacement effect from the area influenced by the model pressure field have been discussed and their global effects can be readily 
evaluated. However, at moderate and high lift conditions, the pressure recovery at the rear portion of the model will inevitably cause 
early separation at the side wall. Once the separation cell is formed, the flow over the model will be so distorted that'it is doubtful that 
the above post-test corrections can be applied meaningfully. To reduce these adverse effects, it is necessary to control the development 
of the boundary layer around the model and prevent early separations at the wall. The most effective way is to apply suction locally at 
the regions where separations may occur [9.18] or over the area strongly influenced by the model pressure field [9.19], [9.20]. 

The application of boundary layer control locally to establish two dimensional test condition is adopted in the ONERA Fl 
tunnel [9.18]. The suction areas are strategically located at regions where flow separations both in two and three-dimensions would 
most likely occur. Suction can also be applied to an area surrounding the model as in the FFA 3.6m low speed tunnel [9.19] and the 
NAE two-dimensional test facility [9.20]. It should be noted that the suction required for these devices is moderate and does not 
remove the boundary layer completely. The control is achieved from the fact that the crossflow is greatly reduced by suction, thus 
the spread of the three-dimensional separation can be confined to a small region around the nose. With the boundary layer energized 
by suction, early separation at the side wall in the region of adverse pressure gradient can also be delayed. In addition, suction reduces 
the large variation of the displacement thickness and eliminates the need for post-test correction. An example of the displacement 
thickness distribution with moderate suction is shown in Figure 9.5, (compare with Fig. 9.2). That suction around the model area is 
of paramount importance for obtaining good two-dimensional flow at transonic conditions is amply demonstrated by the data and 
flow visualization pictures given in Figure 9.6 [9.23]. 

In some test facilities, it is not possible to accommodate suction around the model and the alternative is then to reduce the 
boundary layer thickness ahead of the model by suction. This scheme is employed in some two-dimensional test facilities [9.10], 
[9.21], [9.22]. Reducing the boundary layer thickness, however, does not imply full control of the boundary layer development 
as discussed above. It should be noted that the boundary layer recovers to that of a flat plate rapidly, once it leaves the suction 
area [9.21], [9.24] and thus reacts to the model pressure field in a similar manner as that without suction. Therefore the post-test 
corrections, as discussed in Sections 9.2 and 9.3, will be required to treat the measured data. The displacement effect, however, does 
decrease as the displacement thickness is reduced [9.14]. The validity of the post-test correction is still questionable when separations 
occur at the airfoil-wall junction, as a large separation cell forms because of the thin incident boundary layer [9.5]. 
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Fig. 9.6    Effect of suction on airfoil tests. 
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10.0 WIND TUNNELS WITH ADAPTIVE WALLS 

10.1 Introduction 

The undesirable effects of wall interference have been a problem as long as there have been wind tunnels. A post-test analysis 
of measured data and application of corrections are often unsatisfactory, particularly for large models in transonic and high incidence 
test regimes. In the most severe case, the tunnel flow past the model is distorted to such an extent that the measurement is uncor- 
rectable. In principle, boundary effects can be minimized by testing smaller models in larger tvmnels, but reduction of model size 
reduces test accuracy and Reynolds number and increasing the tunnel dimensions substantially increases the facility cost and power 
consumption. 

A potentially attractive alternative offers the adaptive wall wind tunnel, in which wall interference is either eliminated or 
significantly reduced by actively controlling flow near the walls. The idea of an accommodating wall to reduce wind tunnel interference 
is not new. A notable example of the use of compliant tunnel walls is given in Reference [10.1], describing an NPL wind tunnel (1941). 
However, the early efforts lacked a methology for establishing interference free conditions. In the case of the NPL wind tunnel the 
setting technique was approximate, setting the contours midway between the straight and the contour giving constant static pressure. 
Nevertheless, the streamlining operation established an experimental procedure that is followed today, namely that the adjustment 
of the walls is based on measurements of wall static pressure (representing the streamwise component of disturbance velocity) and 
the local waU position (determining the flow angle). A revival of the adaptive wall concept is due to Ferri and Baronti [10.2] and 
Sears [10.3], who realized that interference free testing is feasible with the aid of on-line computers that can continually monitor 
tunnel flow and control the adjustment of the walls. The major contribution of Ferri and Baronti to adaptive wall technology was their 
pointing out the need for an iterative adjustment of adaptive walls, aimed at decreasing the differences between the measured flow 
variables on the tunnel boundary and the computed ones in the simulated tunnel exterior. The flow variables chosen were wall static 
pressure and flow deflection, in other words the x and y components of the disturbance velocity. Sears proved the correctness of this 
choice, drawing attention to Hilbert transforms, which for subsonic interference free flow provide the requisite functional relationship 
between disturbance velocity components on straight line boundaries. 

Generally, adaptive (or active) walls fall into two categories: the ventilated walls with crossflow control [10.3] and solid 
compliant walls with contour control [10.4]. The feasibility of the first approach, using perforated adaptive walls, was established at 
Calspan [10.5] to [10.8] and, using slotted adaptive walls, at NASA Ames [10.9]. The applicability of the compUant wall approach 
was demonstrated in the University of Southamption [10.10] to [10.14], ONERA [10.15] and [10.16], and in the Technical 
University of Berlin [10.17] to [10.19]. Adaptive wall studies have been also pursued in other laboratories and countries, including the 
Soviet Union [10.20] to [10.25]. 

The principal objective of the ventilated walls is to allow the stream to cross the test section boundary, to generate a flow 
pattern resembling the one in unconstrained flow. Airflow through the ventilated wall (perforated or slotted) is regulated by adjusting 
the pressures in segmented plenum compartments. Figure 10.1, and by variations of the open area ratio. The measured disturbance 
velocity components are then analyzed to see if they are consistent with the interference free conditions in unconfined flow. If they 
are not, new values of wall suction and blowing are estimated, and the operation is repeated. 

Compliant walls do not require any ventilation, provided that they can be contoured as streamlines in infinite field. 
Figure 10.2. The interference free criteria are essentially the same as for the ventilated walls, but it is also very easy to simulate the 
exterior flow past a given wall shape computationally and use the difference between the measured and computed wall pressures as a 
measure of departure from free stream conditions. The wind tunnel walls are recontoured until the pressure difference is zero all along 
the wall. 

The appeal of solid compliant walls is that the tangent component of velocity can be measured by means of simple waU 
orifices and the normal component can be obtained from the local slope of the wall. However, the second of these presumed advantages 
is to some extent illusory, because the wall has a boundary layer and the relationship between the wall slope and the slope of stream- 
lines at the interface (which should be outside this boundary layer) is complicated and generally unknown [10.8]. The measurement 
of two velocity components in the disturbed environment of ventilated wsdls poses a difficult technical problem, particularly for routine 
tunnel testing. However, the advantages of ventilated walls emerge in transonic-supersonic flow regimes, because of their natural ability 
to accommodate shock waves. Concerning the elimination of wall interference, neither type of the adaptive wall test section is perfect. 
The major factors influencing the accuracy are the finite length of the test section (truncation), and the finite number of control points 
(imperfect control). The compliant walls can only be constrained to coincide with streamlines at the positions of the jacks and flow 
through ventilated walls can only be regulated by adjusting pressiures at a few plenum compartments. The error is minimized by closely 
spacing the jacks or plenum compartments where the velocity variations are largest, that is adjacent to the model. 

10.2 Interference Free Conditions 

For subcritical flow conditions at the walls, governed by the linearized potential equation 

3^   a^tj) 
(10.1) 

the interference free conditions can be stated explicitly, utilizing the properties of analytic functions. We shall introduce the complex 
co-ordinates of the observation and running points 

X J 
z = T + iy.f = T+i') (10.2) 

The complex disturbance velocity is 

w(z) = |3u(x,y) - iv(x,y) (10.3) 



where 

3(^ 3(4 
u(x,y) = T-(x,y) ,        v(x,y) = — (x,y) (10.4) 

ox dy 

are the disturbance velocity components. Consider now a simple closed, counter-clockwise oriented contour L which lies entirely in the 
linearized flow region governed by Equation (10.1), and which divides the plane into the interior region Dj and the exterior region D^, 
see Figure 10.3. The absence of outer constraints is equivalent to the condition of analyticity of w in the exterior flow region D^.lt z 
is a smooth point of the contour L, we have according to the Cauchy integral formula 

1 1      /   w(f) 
-w(z) + --    * df = w(<x.) ,        zGL (10.5) 
2 2in   J     ^ - z 

h 

where the integral is the Cauchy principal value. 

When the disturbance velocity at infinity vanishes, w («>) = 0, we obtain the interference free condition 

1        /    Wp(f) 
WF(Z) = -—    <f   — df        ,        z e L (10.6) 

TTl     J        f - Z 

L 

The subscript F indicates the interference free case. Because of the generality of the shape of the contour. Equation (10.6) is applicable 
to arbitrary tunnel geometries, including the test section with compliant walls. 

If the bounding contour consists of two parallel lines at y = ± h/2, the exterior flow region Dj, decouples into two half- 
planes, y > h/2 and y < - h/2, and Equation (10.6) splits into two separate conditions for top and bottom walls: 

/x        h\ T- r       ^Vj3        2/    ^ 

Substituting from Equation (10.3) and separating the real and imaginary parts, we obtain [10.5] 

/      h\ 1        /    ^^ v'"^ 2/ 

which are the compressible-flow versions of the Hilbert transforms (dispersion relations), discussed by Sears [10.3]. 

Replacing in Equation (10.9) x by ^, multiplying each side by 

, |3     1 

and integrating with respect to f, we obtain with the aid of the Poincare-Bertrand transposition formula [10.25] 

-''^i-4)'7i   f ''^(^4)'^7i   I 
d{ 

(f - X) (? - i) 
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Since the last integral is zero, Equation (10.8) is established. It can be likewise shown that Equation (10.9) follows from (10.8). These 
important results imply that any one of the Hubert transforms (10.8) and (10.9) is sufficient for specifying the interference free case. 

For the geheral (simple closed) contour L we obtain, upon substituting Equations (10.2) and (10.3) in (10.6) and separating 
the real and imaginary parts [10.26], 

g     /    [(t - X) Up (J,r)) - (n - y) vp (i,r,)] d{ + [(J^ („ - y) Up (J,,,) + (x - {) Vp (J,rj)] dr) 
vp(x,y) = --    i     (10.10) 

''   I (J - x)2 + p2 (7? - y)2 

1       r   [(3^ in - y) Up {^,v) + (? - X) Vp (J.TJ)] dj - [13^ (J - x) Up (?,7j) - pHv - v) Vp (i,v)] dTj 
%(^'y) = z:   f —:  (10-11) 

P^    J (j _ x)2 + 132 (u - y)2 

Again, only one of the Equations (10.10) and (10.11) will be needed for specifying the interference free case; the other part will be 
redundant. 

In the operator form, the transform pairs (10.8), (10.9) and (10.10), (10.11) can be written 

Vp = JCup (10.12) 

Up = 3f-l Vp (10.13) 

where 

3C-1 = - — 3C 

In practice the velocity components will be measured at only a finite number of points along the control contour and the 
above integral relationships will have to be discretized [10.15], [10.26]. The linear relationship (10.12) becomes 

{VH} =  [H] {up} (10.14) 

where jupj is the column vector of the values of Up at m measurement points, I Vj^} is the column vector of the transformed velocity 
component v^^ at n measurement points, and [H] is the (n X m) transform matrix. Because of the approximation involved, {V[j| is not 
necessarily equal to the interference free vector {Vpj. However, it is presumed that in the limit of vanishing distance between measure- 
ment points the exact interference free relationship 

{vp}  =  [H] {up} (10.15) 

is established. The inverse relationship is 

{%}  = - -   M {^F} (10.16) 

In contrast to Equation (10.13) we do not use the symbol  [H]"' since the matrix  [H]   is not necessarily square and its rank is less 
than n. 

Examples of possible errors resulting from the stepwise and linear interpolations of Up are depicted in Figure 10.4 to 10.7. 
The upper graphs in the figures show the interference free disturbance velocity components 

/      h\      30p.      h\ /      h\      3*F/      h\ 

calculated from Equations (4.14) to (4.18) for M„ = 0.0 and 0.8, and selected singularity strengths o, y, fx, and o). The bottom 
portions show the interpolated values of Up (solid lines), the transformed values Vjj (symbols), and the theoretical interference free 
values Vp (broken lines). In Figure 10.4 we see that with 20 control points along each boundary the step interpolation is too crude for 
determining whether interference free conditions have in fact been established or not. The linear interpolation. Figures 10.5 to 10.7, is 
far more satisfactory. 

These numerical examples are closely related to the problem of the imperfect control of adaptive walls [10.27]. Because of 
nonzero size and finite number of control elements (plenum compartments, jacks, etc.) and hmited number of measurement points 
(pressure orifices, flow angle probes, etc.), the interference free relationships can be established only approximately. However, inter- 
ference can be substantially reduced compared to that in conventional, nonadaptive test sections. An adaptive wall wind tunnel with 
imperfect control can achieve what is, for most practical purposes, interference free flow about the model [10.28]. 
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The linear interference free relationships (10.6) to (10.11) are applicable to supercritical flows past the model, provided that 
the embedded supersonic regions are not excessive and do not reach the walls. The flow is then nearly parallel to the walls and can be 
linearized up to very high subsonic Mach numbers. However, if the flow near the walls is distinctly nonlinear, it is appropriate to replace 
the governing equation (10.1) by the transonic small disturbance equation 

(32 _Z + _J^ = Mi —— / -^ (10.18) 
3x2       3y2 U„     8x  g^2 

In this case, the interference free relationships cannot be obtained analytically. 

For subcritical flows, where Equation (10.18) is elliptic, the evaluation of interference free relationships entails calculation 
of the fictitious flowfield exterior to the interface L, with the contour distribution of one of the measured disturbance velocity 
components prescribed as boundary values [10.8]. The agreement of the remaining velocity component with its computed exterior 
counterpart indicates interference free flow inside the test section. 

For example, for a straight line interface at y = h/2 we solve Equation (10.18) in the upper half plane, y > h/2, subject to 
the far field conditions 

30 30 /-^ ~—:r 
—     ,    —^ -* 0        as       V x^ + ^2y2   -* oo 
3x 9y 

and the (Neumann) boundary condition 

(X,— ) = v [x,— I , - oo < X < 
,2/ V    2/ 

30 /   h^ 

3y 

The numerical solution can be obtained by finite difference, finite element or other suitable methods; for some interesting theoretical 
aspects see Reference [10.24]. 

The resultant disturbance velocity component 

h\       30 /    h > 

gives the interference free counterpart of 

"^K) = SK) 

V, (x,f) - . (.=,|) 

If the measured value agrees with the computed one, 

oo   <   X   <   oo 

the interference free flow, as far as the upper interface y = h/2 is concerned, is established. 

For highly curved compliant walls it is more appropriate to calculate the external flow past the actual wall contour, corrected 
for the displacement thickness of the boundary layer [10.4], [10.11]. 

Formally, the obtained (numerical) dependence of Vp on Up  or Up  on Vp  can again be written in the operational 
form (10.12) or (10.13), but of course the (nonlinear) operators Jf and JC"' are not known explicitly. 

10.3   Iterative Schemes for Achieving Interference Free Conditions 

In practice, the disturbance velocity components u and v along the control contour will not comply with the interference 
free relationships. A simple iterative scheme [10.5] for achieving interference free conditions is readily obtained from Equation (10.12): 

vO+l) = (1 - r) v«> + r Jf u(i' (10.19) 

where r is a relaxation factor on the interval 0 < r < 1. For linearized subsonic flow and straight line interfaces y = ± h/2, JC is the 
Hilbert operator [10.29] and 

°° uO> 6,+ -) 
a           f             \        2/ 

JCuO) = ±-       i      d? (10.20) 
TT y S - X 

— oo 

The matrix form of the above iterative scheme follows from Equation (10.15): 
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{v}a-i) = (i_r){v)(J) + r[H] |u(a) (10.21) 

In the iterative step (j) the walls are adjusted to produce the required v^'. The newly obtained u^J', together with yO', serves to 
determine v^+l' that has to be produced in the wall adjustment step (j + 1). The process is continued until (with adequate accura( 

From Equation (10.19) then 

so that 

1 (with adequate accuracy) 

yO + l)   =   yQ) 

v(J) = J(u(J> 

u^' = Up        and        v^' = Vp 

An alternative procedure for specifying u instead of v can be similarly devised from Equation (10.13) or (10.16). 

As shown by Lo and Kraft [10.30], the subsonic iterative procedure is convergent independently of the initial values u'"' 
and v( ' and the relaxation factor 0 < r < 1. However, for a successful application of the method in practice, requiring a small 
number of wall adjustment steps, the selection of the initial values and the relaxation factor plays an important role. 

Of great interest in this connection is the single-step convergence formula, proposed by Lo and Kraft [10.30] for subcritical 
conditions at the Walls and nonlifting flows; the extension to lifting flows is due to Paquet [10.31]. The formula is based on the 
classical wall interference concept, utilizing the splitting of the complex disturbance velocity 

w (z) = Wp (z) + w^ (z) (10.22) 

where Wp is a function analytic in the exterior region D^ and w^ is a function analytic in the interior region Dj, Figure 10.3. 

For a smooth point z of the simple closed contour L, according to Cauchy's integral formula 

■ 1 1        /    Wp(f) 

i''^^'^*^   i   Trr^f = °        ,        zEL (10.23) 

1 1       /   ww(f) 
- ^ w^ (z) + —    J   —^ df = 0        ,        z e L (10.24) 

, , L 

Adding Equations (10.23) and (10.24) and eliminating w^ from Equation (10.22), we obtain the single-step formula 

1 1      /   w(f) 

?- 
L 

(10.25) 

which determines the value of Wp at a contour point z in terras of values of w on the contour. 

For the contour consisting of two straight lines at y = ± h/2, we obtain 

'^V^        2/2     \p        2/     2rri      J ?-x       "^      2m      J       |-x?iflh   ^^ (10.26) 

If w - Wp, the ordinary integral drops out, according to the Cauchy integral formula for a function analytic in the half-plane and 
Equation (10.26) reduces to the interference free relationship (10.7). ' 

Using Equation (10.3) and separating the real and imaginary parts, we obtain 
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2w 
MI f    ^ dJ + TT      r    ^^^^ ■u(j,+ J)df (10.27) 

"'^(^-i)4"(='-i)^i      / ^(^'4) 
d| 

2TT 

°°   u 4,+-) °° 
f   -Jl^a^,^      f ^-- v6,.J^)dt (10.28) 

_i     (?-x)2 + /32h2 27r/3   _J^     (g-x)2 + p2h2     V      2/ 

Equations (10.27) and (10.28) demonstrate that for the case of subsonic flow at the walls the boundary measurement of u 
and V is sufficient for the determination of the corresponding disturbance velocity components Up and Vp in free air. It is also seen 
that Up and Vp are determined from u and v uniquely, which means that the adjustable walls cannot be manipulated to produce 
any Up and Vp satisfying Equations (10.8) and (10.9). For finite size airfoils, where the assumption (10.22) is not exact, each of 
Equations (10.27) and (10.28) can easily be converted into a new iterative scheme. The left hand side is not considered to be the 
interference free value, but the new estimate of v or u that has to be established in the next wall adjustment step. When finally Vp = v 
or Up = u, the interference free relationship (10.8) or (10.9) is established. 

The comparison with the iterative scheme (10.19) and (10.20) shows that the first two right-hand side terras of 
Equation (10.27) can be produced by selecting the relaxation factor r = 0.5, the value first proposed by Ferri and Baronti [10.2]. The 
ordinary integrals of Equation (10.27), which accelerate convergence, cannot be obtained from Equations (10.19) and (10.20). On the 
other hand, the basic iterative scherae (10.19) is also applicable to supercritical flows near the walls [10.7]. Because the operator X is 
nonlinear, the questions of convergence is a difficult one and, besides experimentation, there are no reliable quidelines available as yet 
concerning the selection of an optimum relaxation factor. 

10.4   Initial Setting of Adaptive Walls 

So far we have considered the iterative establishing of the components Up and Vp of the interference free disturbance 
velocity on the control boundary, ignoring the actual control of the flow parameters at the walls, that must accompany such a 
procedure. This may appear more or less as an academic exercise, particularly since there is no guarantee there that the available wall 
control (suction, blowing, open area distribution, wall deflection, etc.) enables the iterative steps leading to interference free flow. 

The simplest approach to wall adjustment uses a far field estimation of Up and Vp and ideahzed wall boundary conditions. 
In this case the flow inside the tunnel agrees to within certain accuracy with the unconstrained infinite flow [10.23], [10.24]. The 
measured boundary velocity components u and v can be analyzed for residual corrections, for example as described in Section 6.5, or 
used as initial values for the subsequent iterative adjustment of the walls. Chances are that the initial wall setting will bring us close to 
interference free conditions, so that only a small corrective action will be required to establish them fully. This is of great value for 
facilities with short run times, where rapid wall adjustment is very essential. 

As described in Section 4.1, the subsonic far field of an airfoil in free air can be estimated from Equations (4.14) to (4.18), 
and a quick assessment of the required ventilated wall adaptation made by substituting in the wall boundary conditions discussed in 
Chapter 2. 

For example, according to Equation (2.23) the required distribution of the porosity parameter along the walls at y = ± h/2 is 

30p   /   h\ ^*F  /      h\ 

ax \  2/ ax \     2/ 

where the subscripts U and L denote the upper and lower walls respectively. The calculated parameters 

2          PuW 2 PLW 
T„(x) = -atan         ,        T, (x) = - atan—-— (10.30) 

for the earlier used free air case in Figure 10.7a is shown in Figure 10.8a. Admittedly, a suitable distribution of porosity can be used to 
attenuate certain adverse features of wall interference [10.32], but a complete elimination is impossible, since negative values of the 
porosity parameter have no physical correspondence. 
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The slot parameter distributions, required to eliminate interference of longitudinally slotted test section is obtained from 
Equation (2.40): 

Ku(x) 
ax (-i) 

320P 

3x8y (4) 
KL (X) = 

30P 

(-i) 

3x9y (-l) 

(10.31) 

The calculated parameters 

'/'uW 1 + -Ku(x) ■Z-LW 1 + 
2 1-1 ^K,(x)J (10.32) 

for the same free air case are shown in Figure 10.8b. Because of the presence of the second derivative of 0p in Equations (10.31), the 
streamwise variations of 4/^ and I//L are even more rapid. Again, it is beneficial to vary the slot parameter by suitably shaping the 
slots [10.33], but it is impossible to eliminate interference completely, since the slot parameter caimot be negative. 

Until now it was assumed that the plenum pressure is constant, equal to the undisturbed static pressure of the tunnel stream. 
The unfavorable situation concerning the elimination of wall interference can be changed by permitting the plenum pressures to vary in 
the streamwise direction. This essential feature of adaptive test sections with ventilated walls is achieved by subdividing the upper and 
lower plenum chambers into compartments, where the pressures can be controlled individually [10.3]. 

For ideal porous walls, some interesting studies were performed by Byrlcin and Mezhirov [10.21]; we will here present an 
illustrative example only. For simplicity, it is assumed that the plenum pressures py (x) and PL (X) can be varied continuously. The 
upper and lower plenum pressure coefficients are defined as 

PuW PL (x) 

Cp„(x) 
KM-" 

Cp^(x) 
KMf 

(10.33) 

where K; - 1.4 and p„ and M„ are the reference pressure and Mach number. The only limitation imposed on plenum pressure 
coefficients is the vacuum condition 

Cpu(x), Cpj^(x) > 
KUI 

(10.34) 

Provided that the walls are sufficiently open, this, as we shaU see, is a relatively mild restriction. 

For porous walls, utilizing the boundary condition (2.20) with the constant term given by Equation (2.22), the distributions 
of upper and lower plenimi pressure coefficients needed to eliminate interference are 

Cp„(-) V '2/      Pu    3y   V '2/ 
Cp^(x) 

— f      h\       1^/      h\ 
"aT r'~2/ " P[ ly" V'"2/ 

(10.35) 

The porosity parameters P^ and P^ can also be considered to be functions of x. As suggested by Sears [10.3], the variable porosity 
may be advantageous in regions near the airfoil, where the variations of u and v are most rapid. 

Figure 10.9 shows the distributions of the plenum pressure coefficients needed to eliminate wall interference for the same 
stream Mach number and singularity strengths as used in the variable porosity example in Figure 10.8a. The condition C   > - 2.23 
foUowing from Equation (10.34) is met for both selected porosity parameters Pu = PL = 1.0 and 0.5. It is seen that the less porous 
(more resistive) wall requires more pressure regulation. For very low values of the porosity parameters Equations (10.35) indicate that 
the vacuum condition would be violated and the adjustment for interference free conditions made Impossible. 

For longitudinally slotted walls the analysis is similar. Using the nonhomogeneous boundary condition (2.39), the plenum 
pressure coefficient distributions needed to establish interference free flow are 

Cpu(x) = -2 
30F /   h\ 3^'^F /   h\ 

CPL(X) = -2 
30F   /      h\ 3-^0p 

3x 
/     h\ " 'PF   /     h\ 

(10.36) 

The slot parameters Kjj and K^ can again be considered to be functions of x. 

Figvure 10.10 shows the plenum pressure coefficients, evaluated for the same free air case as in Figure 10.9. The utilized non- 
dimensional slot parameters are defined as 

(10.37) 
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For the selected values Fy = F^ = 0.20 and 0.40 the plenum pressure regulation is again possible." As in the porous wall case, very low 
values of open area ratio lead to Ky, K^ "^ °° and the condition (10.34) would then be violated. 

From the comparison of Figures 10.9 and 10.10 it appears that the slotted walls do not require pressure regulation over such 
a large length as the porous waUs do. However, since it is not known to what extent the plenum segmentation reduces the transfer of 
strearawise momentum through the slotted wall, and thus affects the idealized slotted wall boundary condition, this result is only 
hypothetical. 

The initial setting plays an equally important role for solid, comphant walls [10.16]. To construct streamlines for a given 
free air potential 0p, we can use the simple marching scheme 

Xn+l  = Xn + Ax„ 

^(x„,y„) 

Vn+l   =  Vn +  JT  ^^n 

l-^(x„,yj 

(10.38) 

where Ax„ is the nth step in the streamwise direction. The limitation of the wall adjustment are mechanical, given by elastic 
properties of the walls [10.12], and topological, disallowing the wall to cross the airfoil. To hold the airfoil near the centreline of a 
narrow test section, there should be provision for moving the airfoil vertically with change of angle of attack [10.4]. 

An example of top and bottom wall deflections Sy^ and 5yL is shown in Figure 10.11b. The starting (anchor) points of the 
1 

streamlines were set at x/h = -5.0 and y/h = ±—. The wall divergence 

Syu - SVL 

observed far downstream is due to the presence of the source of strength o in the free air potential 0p. It is also noted that the 
deflections Sy^ and 6yL have nonvanishing slopes at the distances as large as |x|/h = 5, which indicates that test sections with solid, 
compliant walls have to be quite long to provide interference free conditions with a good accuracy [10.11]. The disturbance velocity 
components Up and Vp in Figure 10.11a differ slightly from those in Figure 10.7a, since the walls are no longer straight. The initial 
wall contours can be made more accurate by making an allowance for the boundary layer thickness, estimated from the theoretical 
wall pressure distributions. 

10.5   Linear Control Wind Tunnels 

If the wind tunnel can be treated as a linear control system, the interference free condition can be established in a single 
adjustment step. Linearity is most likely a valid assumption if the walls are already preset (on basis of far field computation, previous 
test, etc.) and only a small corrective adjustment is required to achieve interference free flow. 

Let f denote a general control variable (pressure in the plenum compartment, wall deflection, etc.) and Sf its variation. The 
linear dependence of the disturbance velocity increments 6u and 5v at m and n measurement points respectively on 5f at k control 
points can be expressed in matrix forms as 

5u [U] {6f} |5v}  =  [V]  {6f) (10.39) 

where (Sf),  (Su) and {Sv} are the column vectors of the values Si, 5u and 5v respectively and  [u] and  [v]  are the (m X k) 
and (n X k) influence matrices. A summary of the matrix dimensions is given in the Table below. 

column vector rows X columns matrix rows X columns 

|5f) 

|Su},|u},(up) 

|5vl,(vl,lvJ 

kXl 

mXl 

n X 1 

[H] 

[U] 

[V] 

n X m 

m X k 

n Xk 

Denoting by   (u)  and  (v} the column vectors of measured x and y disturbance velocity components, the following 
adjustment is required to obtain interference free flow 

(u) + {6u)  =   |up} v   +   6v    =    Vp (10.40) 

With the help of Equations (10.39) 

M + [U] {6fl  =  {up jv) + [V] {5fl  =  {vp 

Substituting in the Interference free relationship (10.15), we obtain 

([V] - [H]   [U])  {5fi  =   [H]  {u} - W (10.41) 
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When n = k, Equation (10.41) represents a system of n linear equations for the n unknown values of 5f. If further [v] - [H]  [U] 
is a nonsingular matrix, we obtain Dowell's formula [10.34] 

!«}  =   ([V] - [H]  [U])-1 ([H] {u} - {v}) (10.42) 

which determines the column vector of the control variable needed to establish interference free conditions. 

When the number n of measurement points exceeds the number k of control points (expected condition in practice), 
Equation (10.41) represents an overdetermined system of linear equations that can be solved only in a least-square or some similar 
sense. 

It is clear that the success of the method depends on the knowledge of the influence matrices  [u] and  [v] . For ventilated 
walls the natural choice of the control variable is the pressure coefficient in the plenum compartment. As demonstrated by 
Satyanarayana, Schaier, and Davis [10.9], the influence matrices can be obtained experimentally from the disturbance velocity changes 
at the measurement points induced by k linearly independent combinations of compartment pressure increments. Because of aero- 
dynamic interactions, this procedure is faster than that of changing the pressure in one plenum compartment at a time while keeping 
the pressures in other compartments constant. In principle, the measurements leading to influence matrices should be done in the 
presence of the model and at the given, preadjusted tunnel conditions. The experimental data of Reference [10.9] indicate that in the 
range of small plenum pressure increments, the velocity changes are indeed almost linear. 

For solid compliant walls the best choice of the control variable is the y component of the disturbance velocity, given by 
the local slope of the wall. In this case 

[V]   =  [I] 

is the unit (identity) matrix and Equation (10.42) becomes 

i5vl=   ([l]-[H][u])-l([H]{u}-{v}) 

The matrix [u], providing now the relationship 

|5u} =   [U] {5v} 

(10.43) 

(10.44) 

can be approximated, neglecting the aerodynamic influence of the model, from test section geometry. Using the Fourier transform 
method, an example for straight line walls and stepwise variations of Sv was given by Erickson and Homicz [10.28]. 

An alternative derivation provides the Cauchy integral formula. We introduce the complex variables (10.2) and the variation 
of the complex velocity 

6w(z) = (3 Su(x,y)-i 5v(x,y) 

which is assumed to be analytic in the interior region Dj. For a smooth point z of the contour L then 

, 1     /   5w(n 
Sw(z) = -    t    —^df 

iri   J      f - z 
z e L 

(10.45) 

(10.46) 

In particular, for straight line contours at y = ± h/2 

'''{r''^) = 'i / 
5w 

\B       2/ 1 
^-x 

d? 1        f ^^ 
iri      J       ^-x + 

(l"l) 
i^h 

di (10.47) 

Substituting from Equation (10.45) and taking the real part, we obtain 

h\ 

(J-x)2 +(32h2 

1 

/ 
dJ - 

/ 
?-x 

(?-x)2  -Hj32h2 
5v ('■'i) df (10.48) 

which can be further discretized to yield the reqxiired linear dependence (10.44). 
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This simple result, together with the control formula (10.43), is suitable for solid compliant walls if they are only mildly 
curved, or straight ventilated walls if it is known how to set up any desired normal velocity distributions along the walls by varying 
plenum pressures. Empirical formulae of the type described in Reference [10.28] might be helpful, but it should be also remembered 
that, in general, the plenum pressure affects both 5u and 5v in a coupled fashion. 
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